
Chaos, Solitons and Fractals 164 (2022) 112707

Available online 28 September 2022
0960-0779/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Impact of finite size effect on applicability of generalized fractal and 
spectral dimensions to biological networks 

Adam Craig a,*, Mesut Yücel b, Lev Muchnik c,d, Uri Hershberg e,** 

a School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA 
b GlaxoSmithKline, London, UK 
c School of Business Administration, The Hebrew University of Jerusalem, Jerusalem, Israel 
d Microsoft Research Israel, Alan Turing 3, Hertzliya, Israel 
e Department of Human Biology, University of Haifa, Haifa, Israel   

A R T I C L E  I N F O   

Keywords: 
Biological networks 
Fractal dimension 
Spectral dimension 
Multifractal analysis 
Multi-spectral analysis 
Memory-biased random walk 

A B S T R A C T   

In recent years, researchers have explored fractal dimension, spectral dimension, and multifractal analysis as 
ways of describing the emergent hierarchical structure of complex networks. However, fractality implies an 
infinite recursion that is impossible for finite networks describing real-world biological systems. We show that 
there is a substantial finite size effect on two widely used empirical methods (box-covering and sandbox) of 
estimating generalized fractal dimensions. As a partial solution to this issue we introduce here a generalized 
method for calculating network spectral dimension using a memory-biased random walk (MBRW). To observe 
the impact of network size, we start with an ensemble of networks representing a variety of biological systems, 
identify their community structures using Infomap, and use a modified stochastic block model to generate 
networks with similar community structure but varying size. We find that, compared to shortest-path-based 
generalized fractal dimension methods, the MBRW generalized spectral dimension (Dq) shows a clearer and 
more consistent ordering of networks by community structure for all orders (q) considered. We also find that, 
among the measures of multifractality and multispectrality, only MBRW multi-spectrality (range of Dq values) 
changes in a consistent direction under randomization of each level of community structure. Our results show 
that network size is an important consideration when comparing the fractal or spectral dimensions of real-world 
networks and that observing the interaction between network structure and an agent acting in time with memory 
provides insights into network structure not available through calculations based on purely topological features.   

1. Introduction 

1.1. Time and memory in networks 

Using networks to represent interactions and relationships in real- 
world systems is a widely accepted and useful methodology for under
standing and analysis [3]. Many common approaches to looking at a 
network rely primarily on static topological features of the network, 
such as degree distribution and shortest paths [3]. However, it is also 
possible to analyze dynamics of the processes occurring on networks, 
which is particularly likely to provide new insights when the network 
represents a set of dynamic underlying processes, only some subset of 
which are happening at any one time [4]. Clusters of entities whose 

interactions occur close together in time often constitute functional units 
or other communities, such as ganglia in the nervous system [28] or 
complexes of proteins [13]. Furthermore, many such systems feature 
memory in the sense that components that recently interacted are more 
likely to interact again in the immediate future. As examples, neuronal 
circuits often contain feedback loops such that activity in a certain part 
of the network is self-sustaining over a short period of time, even 
without additional stimuli [16], and post-translational modifications of 
proteins provide a form of memory that modifies which proteins in a 
protein-protein interaction network can interact [7]. While accurately 
modeling the dynamics of such networks is often a complex and 
application-specific task, random walks provide a simple and broadly 
applicable way of observing how network topology influences sequences 
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of interactions. In particular, researchers have previously made use of 
the ability of communities to slow the progression of a random walk 
agent through the network in order to develop random-walk-based 
community detection algorithms, including the widely used Infomap 
algorithm [23,27,29]. However, Yücel and Hershberg showed that a 
simple random walk agent is often more heavily influenced by local- 
scale features, particularly hubs, compared to a memory-biased 
random walk (MBRW) agent, which is primarily influenced by com
munity structure [36]. 

1.2. Fractal and dimension and network size 

In precent years, researchers have made a variety of claims about 
network fractal dimension as a measure of macro-scale properties of the 
network, such as robustness or susceptability to attack [33,34]. This 
concept of network fractality arises from an analogy with the fractality 
of shapes embedded in a Euclidean coordinate space, such as an outline 
in a plane, which intuitively corresponds to roughness in the sense of 
nested levels of detail: the higher the fractal dimension, the faster the 
perimeter of the shape grows as the resolution with which we measure 
that outline increases [22]. Starting with [31], researchers have tried to 
extend this notion of levels of nested detail to networks of nodes and 
edges not embedded in a coordinate space through an analogy between 
measurement of the perimeter of a rough shape with a straight edge and 
renormalization of a graph by collapsing all nodes within a certain 
shortest-path distance of some central node into a single box node [31]. 
Prior work observing that the box-counting fractal dimension of a scale- 
free network decreases as the network grows interpreted this as indi
cating decreasing robustness of the network [33]. However, this raises 
the question of at what size the concept of fractality even becomes 
applicable to a finite real-world network and whether such observations 
could reflect an artificially inflated estimate of fractality in smaller 
networks, where the reality is further from the ideal of infinitely nested 
structures implied by the concept of fractality. Furthermore, whereas 
attention has previously focused on fractality as a measure of the 
vulnerability or robustness of entire networks, such as the fragility of 
communication networks or the ease with which a virus can travel 
through a contact network, and on the importance of individual nodes, 
relatively little prior work has studied the relationship between network 
fractality and community structure [33]. More fundamentally, the 
concept of fractality in metric spaces implies an infinite nesting of 
structure within structure, while networks describing real-world sys
tems consist of finite numbers of discrete nodes and edges, often in the 
lower hundreds or thousands, small enough that the assumption of 
infinite size seems implausible, raising the question of how applicable 
the concept of fractal dimension is to small real-world networks and how 
comparable results are for networks of different sizes. For example, prior 
research has found that scale-free networks with the same degree dis
tribution have monotonically decreasing fractal dimension as the size 
increases, which was then interpreted as showing that larger networks 
were less robust [33]. However, it is possible that the difference is an 
artifact of a finite-size effect. In this work, we set out to explore the 
relationship between fractal dimension, network size, and community 
structure. 

1.3. Generalized MBRW spectral dimension and community structure 

The common methods of finding the fractal dimension of a network 
place networks into a box or cluster based on shortest path distance from 
some seed node [33]. In many networks, however, agents and infor
mation do not always travel by the shortest path. This is particularly true 
for networks that reflect sequences of interactions, or shaped by diffu
sion of some entity or a dynamic process that leverages existing re
lations, like the networks commonly used to represent biological 
systems. The idea of a dimension associated with fractality that governs 
diffusion originated with [2] and has since evolved into the concept of 

the spectral dimension [6]. However, prior works defined spectral 
dimension in terms of a simple random walk. We here introduce a new 
version of spectral dimension based on the rate at which an MBRW agent 
explores the network and hypothesize that it will bear a clearer rela
tionship to community structure than does either simple random walk 
spectral dimension or any shortest-path-based fractal dimension. 

Additionally, real-world networks are heterogeneous, with different 
regions having different levels of interconnectedness. Several works 
have used generalized fractal dimensions, ones that have a tunable 
parameter, generally an exponent, that one can adjust to give more 
emphasis to denser or more sparse parts of the network and used the 
range of this generalized dimension over a given domain of the 
parameter as a measure of network heterogeneity [10,20,21,32,33]. In 
order to achieve this same ability to study network heterogeneity with 
spectral dimension, we propose a generalized MBRW spectral dimen
sion. We start with the formula SN ~ Nᵭ/2 from [25], where ᵭ is the 
spectral dimension, N is the length of a random walk on the network, 
and SN is the expected number of distinct nodes visited in the walk. We 
replace the simple random walk with an MBRW and replace the simple 
mean with the generalized mean (See [5]). The exponent of the power 
mean serves as the tunable parameter giving more weight to the larger 
or smaller values [5], here the walk segments covering more or fewer 
nodes, so that the range of generalized spectral dimension values over a 
sufficiently wide domain of positive and negative exponents (the MBRW 
multi-spectrality) can serve as a measure of heterogeneity of community 
structure. 

To test how strongly MBRW spectral dimension and multi-spectrality 
relate to the kinds of community structures found in real-world bio
logical networks, we tested them with synapse, protein-protein inter
action (PPI), and metabolic networks. To test the relative impacts of 
network size and structure on the generalized MBRW spectral dimension 
and two shortest-path-based approaches to calculating generalized 
fractal dimensions, we compared values across a set of artificial net
works with community structures modeled on those of the real-world 
networks but rescaled to different sizes. We found that all the di
mensions showed a pronounced finite size effect that only became small 
relative to differences in community structure at sizes much larger than 
those of the real-world networks. We also compared the impacts of 
different scales of community structure on MBRW multi-spectrality and 
two shortest-path-based multifractality measures by comparing values 
of the real-world networks to those of partially and fully randomized 
counterparts with the same size and mean degree. We found that only 
MBRW multi-spectrality changed in a consistent way under each 
randomization, increasing as the randomness of the network increased 
and showed relatively low variability within most sets of networks 
generated by applying the same randomization method to the same 
original network. These results show that memory keeps the generalized 
MBRW spectral dimension strongly tied to community structure across 
all values of its power parameter, making it more effective as a way of 
investigating the heterogeneity of network structure. 

2. Methods 

2.1. Memory-biased random walk 

Whereas a conventional random walk agent on an unweighted, un
directed network has an equal chance of moving from its current loca
tion to any adjacent node, the MBRW agent computes new weights for 
all possible transitions at each time step [37]. It has two parameters, a 
bias, α, and memory length, s (Ibid.). An additional rule forbids back
tracking along the edge by which the agent arrived at its current location 
to prevent memory from causing it to pass back and forth repeatedly 
between the same two nodes, a behavior that would not tell us anything 
about community structure (Ibid.). The probability of any other transi
tion it has taken within the past s steps, that is, a remembered transition, 
is α times higher than the probability of any other transition(i.e., those 
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not taken recently). For example, if the current node has 10 edges, 
arrived by one edge, and has left via two of those edges on previous visits 
within memory, then the transition back to the previous node has a 
probability of 0, each of the 2 remembered transitions has a probability 
of α/(2α + 7), and each of the 7 unremembered transitions has a prob
ability of 1/(2α + 7). Previously, Yücel et al. found that the community- 
seeking effect of MBRW holds over a wide range of biases and memory 
lengths (Ibid.). In selecting parameters, we started with the values α =
1000 and s = 5, shown to work well for community detection in artificial 
networks in [38], and sampled the effect of parameter choice on the 
MBRW spectral dimension for α of 1000, 5000, 10,000, 50,000, and 
100,000 and s of 3 (the minimum for which memory can have any ef
fect), 5, 10, 50, 100, 500, 1000, and 5000 by comparing the values on 
original and fully randomized networks. Using a larger value of α in
creases the difference between the spectral dimension (D1) values of real 
and randomized networks but at the cost of needing to run the simula
tion longer in order to adequately cover the network. We selected α =
10,000, as it provided an adequate balance between these two concerns. 
As reported in (Ibid.), even with longer memory, the MBRW agent 
spends most of its time in short loops, rarely longer than 5 steps. To 
check that our results were not sensitive to memory length, we repeated 
all simulations with both s = 5 and s = 500. The results were qualita
tively similar but showed a slightly stronger finite-size effect with 
shorter memory. Since the goal of our tests with rescaled networks is to 
observe the finite-size effect, we show results for s = 5 (See Fig. 3 in 
Results). However, when examining the effect of randomizing different 
scales of community structure on multi-spectrality, we considered finite 
size effect a noise factor and so display results for s = 500 (See Fig. 6 in 
Results). For an example of a side-by-side comparison of results with 
short and long memory, see the plots of effect of randomization on 
spectral dimension in Figs. S3–S26 vs S27–S49 and S118 vs S119 in 
Supplementary Materials. 

2.2. Spectral dimension and multi-spectral analysis 

Spectral dimension, ᵭ, is a measure of the relationship between scale 
and rate of diffusion through an infinite network, which Rammal and 
Toulouse showed related N, the length of a random walk on the network, 
to SN, the expected number of distinct nodes visited in the walk, by the 
power-law SN ~ Nᵭ/2 when ᵭ < 2 and linearly (SN ~ N) when ᵭ > 2 [25]. 
We build on this approach by using this to empirically compute an 
approximate spectral dimension, D1, for a finite network using either 
simple random walk or MBRW. We then create a generalized spectral 
dimension Dq by using the power mean for a power q (q-mean, defined 

for a set of values X = {x1,…, xN} as 
(

1
N
∑N

i=1xq
i

)1/q

) as the expected 

number [5]. The use of the power q allows us to tune the sensitivity of 
the generalized spectral dimension Dq to different parts of the network 
structure. Larger positive values give more weight to the walk segments 
that visit the most unique nodes and thus to less modular portions of the 
network, where the MBRW agent can explore more freely, while larger 
negative values give more weight to the walk segments that visit the 
fewest unique nodes and thus to the most modular portions of the 
network, which most strongly trap the MBRW agent. Our method is as 
follows:  

1. Run a random walk simulation on the network for a set number of 
steps, T. In initial tests, we found that results were not sensitive to the 
total number of steps used so long as it was sufficient to visit every 
node on the network multiple times. We chose T = 227 based on 
practical limitations of available computing hardware, and, in all 
runs, we found that either length was sufficient for the walk agent to 
cover even the largest networks used in this work multiple times (as 
shown by how the y-coordinates of the circles plateau in Fig. 1). 
When we did try a larger value, T = 230, the results were visually 
identical. For example, out of all rescaled networks, the largest 

Fig. 1. log-log plot of q-mean segment mass vs segment length for MBRW (bias = 10,000, memory = 5) segments on a version of the D. melanogaster PPI network 
rescaled to 100,000 nodes and selected q values of -infinity, − 10, − 5, − 1, 0, 1, 5, 10, and infinity. The vertical lines indicate constraints placed on the segment length, 
in this case between 4 and 1453, the number of nodes in the original D. melanogaster PPI network. Filled circles represent (length, mass) pairs within the desired range 
while empty circles represent pairs outside of it. Each line represents a linear regression on the in-range points of the same color. Twice the slope of the regression line 
is our estimate of the MBRW generalized spectral dimension, Dq. 
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absolute difference between two corresponding Dq values (bias =
10,000, memory = 5, one calculated with T = 227, the other calcu
lated with T = 230) was 10.6 %, and the mean absolute difference was 
0.42 %. This stage produces a long sequence of nodes visited by the 
memory-biased random walk.  

2. For each random walk segment length N that is a power of 2 greater 
than or equal to some minimum value Nmin (shown by the black 
dotted line in Fig. 1) and less than some maximum value Nmax 
(shown by the black dashed line in Fig. 1), split the walk into seg
ments of length N, and compute SN(q), the q-mean number of unique 
nodes visited in a segment (the filled circles in Fig. 1). We chose Nmin 
to be the shortest walk length for which the rules of the walk do not 
pre-determine the number of distinct nodes in a segment. For a 
simple random walk this is Nmin = 2, whereas, for MBRW, due to the 
no-backtracking rule Nmin = 4. In general, we found that using a 
single value of Nmax for all networks being compared facilitates 
comparison. It should be a value well before that at which the mean 
segment mass plateaus due to the finite size of the network. For each 
comparison of a real-world network to a set of rescaled or random
ized versions, we set Nmax to the number of nodes in the original 
network.  

3. Use linear regression to find Dq and b such that log2(SN(q) ) ≈ b +

(D1/2)log2(N) (illustrated by the lines in Fig. 1). Take Dq as our es
timate of the generalized simple random walk or MBRW spectral 
dimension. 

To measure the multi-spectrality of the network, we 
computedΔDq∶ = max

q∈Q
Dq − min

q∈Q
Dq, that is, the range of Dq over all q in 

the domain Q = { − 10, − 9,…,9, 10}. We chose these bounds of q in 
keeping with the convention adopted in [10,20,21] for computing the 
box-covering and sandbox multifractalities. In most cases, we found that 
the slope of the log-scale 10-mean of the segment mass as a function of 
length is often close to that of the Inf-mean (maximum value), while that 
of the − 10-mean was close to that of the -Inf-mean, suggesting that this 
range encompases most of the variability of Dq. See Fig. 1 for an illus
trative example. For further discussion of this choice, see section S5 in 
Supplementary Materials. 

2.3. Box-covering and sandbox multifractal methods 

We compare MBRW spectral dimention to two methods frequently 
used for calculating the generalized fractal dimension of a network: the 
box-covering method [20] and sandbox method [21]. The key difference 
between them is that boxes in the box-covering method are disjoint, 
whereas they are overlapping in the sandbox method. For each, we 
considered both this individual Dq value and the multifractality as 
measured by ΔDq, the range of Dq over integer values of q from − 10 to 
10. 

To compute the generalized box-covering fractal dimensions of a 
network, we start by randomly generating 1000 coverings of the 
network with boxes of radius r and choosing the one that covers the 
network with the fewest boxes for each r from 1 to some maximum [20]. 
Li et al. do not specify a method for selecting the cutoff radius (Ibid.). 
When comparing the original network to its randomizations, all net
works are the same size, so we use one less than the network diameter as 
the cutoff. For the rescaled networks, we use one less than the smallest 
diameter (4) for all networks (See section 2.9). For q = 0, the box- 
covering generalized fractal dimension reduces to the box-counting 
fractal dimension (Ibid.). 

Unlike the box-covering method, the sandbox method uses over
lapping boxes, eliminating the computational complexity of computing 
a covering of disjoint boxes [21]. In our implementation, we use every 
node in the network as the center of a sandbox instead of just a random 
sampling of them. As with the box-covering method, we use all radii 
from 1 to one less than the diameter of the network when comparing the 

original network and its same-size randomizations and 1 to 3 for the 
rescaled networks and, for the rescaled networks, we use radii from 1 to 
one less than the smallest network diameter. 

2.4. Real-world biological networks 

To test our methods' applicability, we applied them to 12 biological 
networks of three types: synapse wiring diagrams, protein-protein 
interaction networks (PPIs), and metabolic networks. We analyzed 3 
different attempts to map the neuronal network of C. elegans 
[1,18,28,35], the proteome-scale PPIs of D. melanogaster [14] and 
H. sapiens [26], the embryogenesis gene-focused PPI of C. elegans [13] 
and interferon signalling gene-focused PPI of H. sapiens [19], and five 
alternate reconstructions of the metabolic network of A. thaliana with 
different criteria for inclusion of edges [24]. See Table S1 in Supple
mentary Materials. 

2.5. Preprocessing 

In order to use MBRW on these networks, we must first pre-process 
them in order to obtain versions that the walk agent can completely 
traverse without reaching a dead-end. Additionally, although some of 
the selected networks, such as Human IIS, are directed, we treat all 
networks as undirected so that we can better compare results across 
different networks. Because of the MBRW agent's no-backtracking rule, 
it will have no valid moves whenever it reaches a node with degree 1 (a 
dead-end). To prevent this, we take the 2-core of each network [30], 
iteratively removing each dead-end until none remain. Note that this 
may require multiple passes over all nodes, since removing a node of 
degree one decreases the degree of the node adjacent to it, possibly 
dropping it to 1. After taking the 2-core, we remove any components not 
connected to the largest connected component so that the agent can 
cover the entire pre-processed network. After preprocessing, the 
network sizes ranged from 116 to 2880 (See Table S2 in Supplementary 
Materials.). We used Infomap [8] to detect the community structure of 
each network and found that these networks displayed diverse com
munity structure, with some, such as the C. elegans synapse networks, 
dominated by a small number of large communities and others, such as 
the interactome scale Human and D. melanogaster PPI networks, con
sisting of a large number of small communities, though all showed 
substantial community structure with modularities ranging from 0.35 
(C. elegans neural 1) to 0.74 (D. melanogaster PPI) (See Table S3 in 
Supplementary Materials.). 

2.6. Rescaled networks 

As a way of testing the effect of network size on our measures, we 
created ensembles of rescaled networks, each modeled on one of the 
real-world networks. The goal was to create networks of varying size 
while retaining the same mean degree and proportion of edges that were 
intra-community edges (intra-edges) within each community and of 
inter-community edges (inter-edges) that connected each pair of com
munities. We based our rescaled network model on the stochastic block 
model [17] but modified it in order to ensure that the resulting networks 
are MBRW-traversable. Our modified stochastic block model algorithm 
is as follows:  

1. Let N1 be the size of the original network, G1, and N2 be the target 
size of the rescaled network, G2.  

2. Let M1 be the number of edges in G1, and set the target number of 
edges in G2 to M2 = round(M1N2/N1).  

3. Use a community detection algorithm (Infomap [8] in this case) 
to partition G1 into discrete communities with sizes n1,1, n1,2, …, 
n1,r.  

4. For each community i in G1, create a community in G2 of size n2,i 
= max(3, round(n1,iN2/N1)). 
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5. For each community i in G1, let m1,i,i be the number of intra- 
community edges in i, and set the target number of intra- 
community edges in the corresponding community in G2 to m2,i, 

i = ceiling(max(min(n2,i(n2,i-1)/2, m1,i,iM2/M1), n2,i)).  
6. For each community in G2, connect all the nodes in a cycle. For 

instance, if community i has nodes numbered a through a + n2,i-1, 
then add edges (a + 1,a + 2), (a + 2,a + 3), …, (a + n2,i-2,a + n2,i- 
1), and (a + 1,a + n2,i-1).  

7. Randomly choose whether to connect each pair of nodes not 
connected in the cycle with probability (m2,i,i-n2,i)/(n2,i(n2,i-1)/2- 
n2,i).  

8. For each pair of communities s and t in G1, let m1,s,t be the number 
of inter-community edges between s and t, and set the target 
number of inter-community edges between the corresponding 
communities in G2 to m2,s,t = ceiling(max(min(n2,sn2,t, m1,s,tM2/ 
M1), n2,i)).  

9. For each pair of communities s and t in G2, if m2,s,t > 0, then 
connect the respective first (lowest index) nodes of the two 
communities.  

10. For each pair of communities s and t in G2, if m2,s,t > 0, then 
randomly choose whether to connect each pair of nodes i ∈ s and j 
∈ t such that i and j are not both the first nodes of their respective 
communities with probability (m2,s,t-1)/(n2,sn2,t-1). 

For a visual representation of the overall logic of the algorithm, see 
Fig. S2 in Supplementary Materials. 

For each pair of one of the 12 real-world networks and one of the 100 
target network sizes 1000, 2000, …, 100,000, we generated 10 in
stances. Over 99 % of networks had numbers of nodes and edges that 
both differed from the target numbers by <5 %. We then computed the 
MBRW (bias = 10,000, memory = 5, 10 runs per network) generalized 
spectral dimensions and box covering (10 runs, each with 1000 itera
tions) and sandbox (using every node as a sandbox center as described 
above) generalized fractal dimensions of these networks. 

2.7. Same-size fully and partially randomized networks 

Whereas comparing rescaled networks provided a way to test the 
effect of network size while keeping community structure consistent, we 
subsequently used randomization to test the ability of each measure to 
distinguish networks with community structure from random networks 
of equivalent size and density. Specifically, we posited that a measure 
that reflects the community structure of a network should change in a 
consistent direction when randomization removes some or all of that 
structure and that any such change should be larger than variation due 
to small-scale random differences within a set of networks that are 
similar in size and community structure. Our partial randomization 
methods take a partitioning of the network into disjoint communities 
and preserve the total number of inter-edges and the number of intra- 
edges within each community. We used Infomap using the flag for a 2- 
level partition of the network and all others settings left at their 
default values [8], as this provided communities that were generally 
large enough to have meaningful intra-community structure as well as 
structure in the connections among communities. 

For each real-world network (Original), we generate 4 types of 

randomized network (Fig. 2):  

1. Inter-Edges: Preserve edges between communities (inter-edges) 
while replacing each edge between nodes of the same community 
(intra-edge) with a randomly generated intra-edge within the same 
community.  

2. Intra-Edges: Preserve intra-edges while replacing inter-edges with an 
equal number of randomly generated inter-edges.  

3. Communities: Replace each intra-edge with a randomly generated 
intra-edge in the same community, and replace each inter-edge with 
a randomly generated inter-edge. This method preserves commu
nities, while changing connections within them and alters connec
tions between communities.  

4. Mean Degree: Replace each edge with a randomly generated edge 
without regard for community membership. This method preserve 
the number of the network edges thus keeping the average network 
degree unchanged, but destroying the network structure. 

Using Erdős and Rényi's method or Gilbert's method for randomly 
generating Erdős-Rényi networks could have generated dead-ends or 
unconnected components [9,12], which we would then need to prune, 
changing the size and mean degree. Instead, we developed an algorithm 
that reliably preserves the numbers of nodes and edges, minimum de
gree of 2, and connectedness, Randomize-to-Equilibrium:  

1. Save a copy of E in E0.  
2. Set Δmax = 0.
3. Iterate over all edges in the graph G = (V, E).  
4. Let the current edge be {A,B} ∈ E.  
5. Randomly select a second edge {C,D} ∈ E.  
6. If {A,D} ∕∈ E, {C,B} ∕∈ E, A ∕= D, and C ∕= B, then replace {A,B}

and {C,D} with {A,D} and {C,B} in E.  
7. Use breadth-first search to determine whether the graph is still 

connected.  
8. If the graph is not connected, remove {A,D} and {C,B}, and put 

back {A,B} and {C,D}.  
9. Randomly select nodes P,Q ∈ V.  

10. If {P,Q} ∈ V, P ∕= Q, (kA > 2 OR A = P), and (kB > 2 OR B = Q), 
then replace {A,B} with {P,Q} in E where kA.and kB are the de
grees of nodes A and B, respectively. If one of the nodes from 
which we removed an edge had a degree of 2, it would become a 
dead-end.  

11. Use breadth-first search to determine whether the graph is still 
connected.  

12. If the graph is not connected, remove {P,Q}, and put back {A,B}.  
13. Move on to the next edge in E.  
14. Count the edges in Enot present in E0, Δ = ∣E∣ − ∣E ∩ E0∣.  
15. If Δ > Δmax, then set Δmaxequal to the new maximum Δ.
16. Repeat steps 3–15 until we have performed 100 such iterations 

without updating the value of Δmax. 

The algorithm attempts to perform both endpoint swaps between 
two edges and replacements of single edges with completely new edges, 
because swapping allows us to change edges that are currently between 
two nodes with degree 2, whereas replacement does not. Applying 

Fig. 2. Different randomizations of a model network. From left to right: original, inter-edges, intra-edges, communities, mean degree.  
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Randomize-to-Equilibrium as described above to the entire graph pro
duces an instance of a Mean Degree network. To produce an instance of 
Inter-Edges, we ran Randomize-to-Equilibrium separately on each sub
graph defined by a community. To generate an instance of Intra-Edges, 
we ran the following modified version of Randomize-to-Equilibrium:  

1. Copy all inter-edges to set F = {{A,B} ∈ E | c(A) ∕= c(B) }, where 
c(X) is the community to which node X belongs.  

2. Save a copy of F in F0  
3. Set Δmax = 0.
4. Iterate over all edges F.  
5. Let the current edge be {A,B} ∈ F.  
6. Randomly select a second edge {C,D} ∈ F.  
7. If {A,D} ∕∈ F, {C,B} ∕∈ F, A ∕= D, C ∕= B, c(A) ∕= c(D), and 

c(C) ∕= c(B), then replace {A,B} and {C,D} with {A,D} and {C,B}
in E,F.  

8. Use breadth-first search to determine whether the graph is still 
connected.  

9. If the graph is not connected, remove {A,D} and {C,B}, and put 
back {A,B} and {C,D}.  

10. Randomly select nodes P,Q ∈ V.  
11. If {P,Q} ∈ V, P ∕= Q, c(P) ∕= c(Q), (kA > 2 OR A = P), and 

(kB > 2 OR B = Q), then replace {A,B} with {P,Q} in E, F where 
kA.and kB are the degrees of nodes A and B, respectively. The 
requirement that they have degree above 2 is to avoid creating 
deadends.  

12. Use breadth-first search to determine whether the graph is still 
connected.  

13. If the graph is not connected, remove {P,Q}, and put back {A,B}.  
14. Move on to the next edge in F.  
15. Count the edges in Fnot present in F0, Δ = ∣F∣ − ∣F ∩ F0∣.  
16. If Δ > Δmax, then set Δmaxequal to the new maximum Δ.
17. Repeat steps 3–15 until we have performed 100 such iterations 

without updating the value of Δmax. 

To make an instance of Communities, we first generated an instance 
of Intra-Edges, then applied Randomize-to-Equilibrium to each of its 
communities separately, as done when creating an instance of Inter- 
Edges. For each pairing of original network and randomization type, 
we generated 100 randomized networks. For each such network, we 
used 100 separate runs of MBRW and simple random walk to generate 
generalized spectral dimension estimates. For box-covering generalized 
fractal dimension, we performed 100 runs on each network, each with 
1000 iterations. Since our version of sandbox generalized fractal 
dimension is deterministic, we only ran it once on each randomized 
network. For MBRW and simple random walk spectral dimensions, since 
the networks we want to compare to each other are the same size, we 
selected the number of nodes in the network as Nmax, as this provided a 
cutoff well below where the walk agent fully covered the network in all 
cases. For the box-covering and sandbox methods, we used the diameter 
of the network as the maximum box/sandbox radius. 

3. Results 

3.1. Effect of rescaling on fractal and spectral dimensions 

We tested how sensitive each fractal or spectral dimension is to 
community structure, network size, and small-scale random variation by 
creating ensembles of networks with community structures modeled on 
those of real-world networks but rescaled to different sizes and including 
partially randomly generated intra-edges and inter-edges. For each real- 
world network, we generated 10,000 networks with similar community 
structure of size ranging from 1000 to 100,000 and computed their 
MBRW spectral dimension, box-covering and sandbox fractal 
dimensions. 

Generalized MBRW spectral dimension shows certain behaviors that 

are consistent across all q values tested (− 10 to 10) (Fig. 3): the variation 
among networks of the same size, based on the same original is small 
relative to differences due to size and community structure, showing 
that it is insensitive to small-scale random variation in structure. The 
networks based on the same original network form a distinct band, in 
most cases not overlapping with the bands of other networks based on 
other originals, showing that the measure is sensitive to community 
structure. Each band shows a clear upward trend approaching a different 
asymptotic value as the network size grows large. This upward trend is 
steep compared to the distances between bands in the size range of the 
real-world networks (116 to 2880 nodes), indicating that the finite size 
effect would substantially skew any direct comparison of real-world 
networks of different sizes within this range. Despite this, the ordering 
of the bands stabilizes well before the finite size effect begins to level off 
around 10,000 nodes and remains stable as the size increases. As q in
creases, the value of each Dq increases at different rates for different 
networks. The differences between bands are largest for the middle 
values of q (Fig. 3a), suggesting these provide the overall best sensitivity 
to differences in community structure. The ordering of bands remains 
mostly stable except at extreme negative q values where C. elegans 
neural 1 and C. elegans neural male switch places and the networks other 
than the C. elegans neuronal networks collapse together (Fig. 3b). Lower 
Dq values generally indicate stronger community structure, so the higher 
values of C. elegans neuronal networks at negative q compared to the 
others reflects that they are dominated by a small number of large 
communities with little of the networks occupied by the small, dense 
communities to which negative-q Dq dimensions are most sensitive. 

The two generalized fractal dimensions also have regimes of q for 
which they show low variability among networks of the same size based 
on the same original, separation into bands by community structure, and 
finite size effects that are pronounced in the range of the real world 
network sizes but level off in the tens of thousands of nodes. In both 
cases, we can see these properties clearly for q values near the middle of 
the range (Fig. 4). However, in most other respects, they behave very 
differently from each other. Whereas the trend for sandbox fractal 
dimension, as for MBRW spectral dimension, is to increase with 
increasing size (Fig. 4a), the box-covering fractal dimension decreases 
with increasing size (Fig. 4b). Furthermore, whereas the sandbox fractal 
dimension and MBRW spectral dimension both have distinct bands for 
all original networks, the box-covering fractal dimension only has three 
bands, one for the neuronal networks, one for D. melanogaster PPI, and 
one for all of the other networks. Furthermore, whereas the box- 
covering fractal dimension is most sensitive to small-scale randomness 
when q is positive (Fig. 5a), the sandbox fractal dimension is most 
sensitive when q is positive (Fig. 5b). At the opposite ends of the spec
trum, at large negative q, box-covering fractal dimension shows little 
separation into distinct bands according to network structure (Fig. 5c), 
whereas, for large positive q, sandbox fractal dimension shows distinct 
bands (Fig. 5d). These differences suggest that sandbox fractal dimen
sion and box-covering fractal dimension are fundamentally different 
measures and that box-covering fractal dimension is far less sensitive to 
community structure. 

The behavior of sandbox fractal dimension mainly differs from that 
of MBRW spectral dimension in that its ordering does not stabilize until 
the networks reach a size of over 40,000 nodes. Additionally, the 
ordering of bands changes substantially as q changes. For negative q, the 
sandbox fractal dimension shows high sensitivity to randomness in the 
neuronal networks but not the others, because the small number of large 
communities leaves more room for variability in intra-community 
structure (Fig. 5d). These differences suggest that the sandbox fractal 
dimension depends on community structure but is less strongly tied to it 
and more influenced by other factors than is the MBRW spectral 
dimension. For additional figures showing how the behavior of each 
generalized fractal or spectral dimension measure changes with q, see 
Section S3 in Supplementary Materials. 
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3.2. Effect of randomization on fractality and multifractality 

Whereas our tests with the rescaled networks varied the size of the 
networks while retaining community structure, our network randomi
zation tests kept network size constant while removing community 
structure. A consistent direction of change from original to partially 
randomized to fully randomized networks shows that a measure detects 
community structure. That is, if the direction of change of the median 
values from Original to Intra-Edges (by randomization of inter-edges), 
from Original to Inter-Edges (by randomization of intra-edges), from 
Intra-Edges to Communities (by randomization of intra-edges), from 
Inter-Edges to Communities (by randomization of inter-edges), and from 
Communities to Mean Degree (by full randomization of the network) 
should all occur in the same direction for all real-world networks. 

Ideally, these changes would also be larger than the variability within a 
set of networks produced by applying the same randomization to the 
same original network, showing that the influence of community 
structure is larger than the influence of small-scale random variation. A 
smaller range of values on fully randomized networks is also desirable, 
as it indicates a smaller finite size effect. 

For ΔDq, the range of Dq taken over the selected domain of q for each 
measure, as a measure of multifractality or multi-spectrality, that is, of 
the heterogeneity of the network, only the MBRW multi-spectrality be
haves completely consistently, always increasing from less randomized 
to more randomized networks based on the same original network 
(Fig. 6a). For a discussion of the choice of range of q, see Methods 2.2 
and Supplementary Materials S5. In most cases, it also has the smallest 
variability among networks with the same original and randomization 

Fig. 3. MBRW (bias = 10,000, memory = 5) generalized spectral dimensions D1 (a), D− 10 (b), and D10 (c) of rescaled artificial networks modeled on real-world 
networks. The inset in the plot of D10 shows that the networks remain stratified by community structure at larger sizes. 

Fig. 4. Box-covering (1000 iterations) fractal dimension D0 (a) and sandbox fractal dimension D1 (b) of rescaled artificial networks modeled on real-world networks. 
The color key is the same as that for Fig. 4. 
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type, though the range of values for fully randomized Mean Degree 
networks remains substantial due to finite size effect (around 0.15 
compared to a range of around 0.30 for the Original networks). The 
simple random walk multi-spectrality (Fig. 6b) and box-covering mul
tifractality (Fig. 6c) show no clear trends in direction and a high degree 
of variability within each same-original-and-randomization group. The 
sandbox multifractality (Fig. 6d) shows a clear downward trend with 
increasing randomness and small range of fully randomized values but 
shows inconsistent direction of change between Original and Inter- 
Edges and between Communities and Mean Degree (Fig. 6e). 

We observed that individual shortest-path fractal dimensions (box- 
covering D0 and sandbox D1) changed direction in a highly inconsistent 
manner, with the box-covering method showing high variability for the 
same randomization applied to the same original network (See 
Figs. S115 and S116 in Supplementary Materials). While the simple 
random walk spectral dimension D1 consistently increased with 
increasing randomization, MBRW spectral dimension only increased in 
most cases with exceptions occurring for some networks upon 
randomization of intra-community edges (See Figs. S117, S118, and 
S119 in Supplementary Materials). 

4. Discussion and conclusion 

In this work, we introduce a measure of network fractality and a 
measure of multifractality based on the dynamics of a random walk 
agent with memory running on the network as opposed to relying on 
static shortest path distances: MBRW spectral dimension and MBRW 
multi-spectrality, the range values of the generalized MBRW spectral 
dimensions on a given network. We demonstrate that the memory of the 
MBRW agent ties these measures strongly to network community 
structure, making them robust against small-scale random perturbations 
of the network across a variety of real-world biological networks, while 
the generalized fractal dimensions and measures based on shortest-path 

distances had regimes of their power parameters where they were hyper- 
sensitive to such small-scale variability and showed less clear stratifi
cation by community structure. This suggests that memory helps to 
stabilize the lower end of the distribution of segment masses for each 
segment length by tying walk agent behavior more closely to community 
structure, even when the sizes of the communities themselves are larger 
or smaller than the number steps the walk agent can keep in memory. 

We find that, compared to other methods, the MBRW generalized 
spectral dimension (Dq) is more sensitive to differences in community 
structure (differences between networks derived from different real- 
world networks) than to random variation in small-scale structure 
(differences among networks derived from the same real-world 
network) across all orders (q) considered (− 10 to +10). Every mea
sure, for a q value where it is stable enough against small random var
iations, exhibits a finite size effect characterized by progression 
(decrease for box-covering, increase for all other measures) of values 
toward a distinct asymptotic value for each real-world network with 
increasing network size. In all cases, the values only approach their 
asymptotic limits at sizes larger than 30,000 nodes, much larger than the 
sizes of the real-world network used, 116 to 2880 nodes. To assess how 
strongly each measure related to community structure without inter
ference from the finite size effect, we compare how values differ be
tween the original networks and fully and partially randomized 
versions. 

All measures of fractality showed a finite size effect that was large 
relative to the differences due to community structure in the size range 
of the real-world biological networks considered, 116 to 2880 nodes. 
This shows that the finite size of real-world networks limits the appli
cability of fractal and spectral dimensions and that any attempt to 
compare networks based on such measures must take into account dif
ferences in network size. Using a rescaling method similar to that 
employed in this work may be an acceptable substitute for working with 
the original networks in some cases, but it will be important to ensure 

Fig. 5. (a) box-covering (1000 iterations) D− 10, (b) sandbox D− 10, (c) box-covering D10 and (d) sandbox D10 generalized fractal dimensions of rescaled artificial 
networks modeled on real-world networks. The inset for box-covering D− 10 shows that networks separate into two non-overlapping bands at larger sizes. The color 
key is the same as that for Fig. 4. 

A. Craig et al.                                                                                                                                                                                                                                    



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 164 (2022) 112707

9

that the rescaling approach used preserves the characteristics of interest 
in the original networks. 

Another observation that suggests that static topological measures 
are not sufficient to guage the fractality or multifractality of a network is 
that only a minority of networks were disassortative, showing a negative 
correlation between the degrees of edge endpoints, and, of those, only 
one, Human IIS, has a Pearson correlation of degrees less than − 10 %, 
showing that it was more than weakly disassortative (See Table S2 in 
Supplementary Materials.). Even though some works, such as [11] cite 
disassortativity as a defining feature of fractal networks, many real- 
world biological networks do not exhibit simple disassortativity and 
instead show dichotomous degree correlation [15]. This implies that the 
topological approach to measuring fractal dimension may not be 
applicable to these networks. 

That box-covering and sandbox generalized fractal dimensions 
behaved very differently from one another suggests that they are 
measuring fundamentally different features of the network and cannot 
simply be lumped together as alternate methods of estimating an un
derlying “fractal dimension” that is an intrinsic property of the network. 
Furthermore, neither one showed a consistent relationship with com
munity structure, suggesting that they are less useful than spectral 
dimension in general and MBRW spectral dimension in particular for 
studying meso-scale features and may only be appropriate for their 
already well-documented [33] applications as macro-scale estimates of 

network robustness and vulnerability on large networks. We thus show 
that taking into account the motion of information on a network is key 
for understanding its structure. 
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