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Abstract

The causes of the great variation in nucleotide composition of prokaryotic genomes have long been disputed. Here, we use extensive

metagenomic and whole-genome data to demonstrate that both phylogeny and the environment shape prokaryotic nucleotide

content. We show that across environments, various phyla are characterized by different mean guanine and cytosine (GC) values as

well as by the extent of variation on that mean value. At the same time, we show that GC-content varies greatly as a function of

environment, in a manner that cannot be entirely explained by disparities in phylogenetic composition. We find environmentally

drivendifferences innucleotide contentnotonlybetween highlydiverged environments (e.g., soil, vs. aquatic vs. humangut) but also

within a single type of environment. More specifically, we demonstrate that some human guts are associated with a microbiome that

is consistentlymoreGC-richacrossphyla,whereasothersareassociatedwithamoreAT-richmicrobiome.Thesedifferencesappear to

be driven both by variations in phylogenetic composition and by environmental differences—which are independent of these

phylogenetic composition differences. Combined, our results demonstrate that both phylogeny and the environment significantly

affectnucleotidecompositionand that theenvironmentaldifferencesaffectingnucleotidecompositionare far subtler thanpreviously

appreciated.
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Introduction

What determines nucleotide composition is an area of intense

study in both prokaryotes and eukaryotes (e.g., Sueoka 1962;

Bernardi and Bernardi 1986; Ikehara et al. 1996; Fullerton et

al. 2001; Naya et al. 2002; Bentley and Parkhill 2004;

Bernaola-Galvan et al. 2004; Foerstner et al. 2005;

Matallana-Surget et al. 2008; Barkovsky and Khrustalev

2009; Touchon et al. 2009; Hershberg and Petrov 2010;

Hildebrand et al. 2010; Wu et al. 2012, 2014; Chen et al.

2013). The degree of variation in nucleotide content is parti-

cularly expansive in prokaryotes where it ranges from approx-

imately 15% to approximately 75% guanine and cytosine

(GC) (Sueoka 1962; Bentley and Parkhill 2004; Nakabachi et

al. 2006). Yet, currently there is no general agreement on

what causes the extensive variation in nucleotide content

among prokaryotes. Explanations fall into two broad catego-

ries: Neutral processes and natural selection. Neutral explana-

tions suggest that variation in genomic nucleotide

composition arises due to neutral processes, such as mutation

and/or biased gene conversion (BGC). In contrast, it has also

been suggested that natural selection exerted by environmen-

tal factors may be responsible for generating this variation. As

variation in nucleotide content is a genome-wide trait that

affects the genome as a whole, it is highly interesting to un-

derstand what drives such variation, and whether it is driven

by neutral processes or by natural selection.

Mutation may drive variation in nucleotide content, if

different bacterial lineages vary in their mutational biases.

Under such a model, GC-biased mutational patterns will gen-

erate GC-rich organisms, whereas AT-biased mutational
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patterns will generate AT-rich organisms. Fitting with this

model, studies have shown a possible correlation between

the DNA polymerase subunit content of bacterial genomes

and their GC-content (Wu et al. 2014). However, the model

by which mutational biases drive variation in nucleotide con-

tent was recently driven out of favor by the discovery that

mutation is universally AT-biased—even in prokaryotes with

highly GC-rich genomes (Hershberg and Petrov 2010;

Hildebrand et al. 2010). A second neutral process, suggested

to affect GC-content, is BGC (Duret and Galtier 2009). It has

been demonstrated that gene conversion is GC-biased in

many eukaryotes, and in such cases, the probability that a

GC allele is passed on to the next generation through gene

conversion is higher than that of an AT allele. As a result of

such BGC, in these eukaryotes, regions with lower recombi-

nation rates tend to be more AT-rich, whereas regions under-

going more recombination will tend to be more GC-rich

(Fullerton et al. 2001). A relationship between levels of recom-

bination and GC-content was recently demonstrated for

many bacteria, suggesting that BGC, or a mechanism similar

to BGC, may affect nucleotide content in bacteria in a similar

manner (Touchon et al. 2009; Lassalle et al. 2015). Under this

model, prokaryotes will tend to be more GC-rich if they have

higher rates of recombination, higher effective population

sizes, and/or a process of gene conversion that is more

biased toward GC.

One can easily imagine that neutral processes affecting

nucleotide composition may vary between different bacterial

lineages. It may appear less likely that these neutral processes

would vary between environments in a systematic manner.

Therefore, it may be a reasonable prediction that neutral pro-

cesses contribute to variation in nucleotide content between

phyla, but not between environments. An observation of en-

vironmentally driven variation in nucleotide content, which

cannot be explained solely by differences in phylogenetic com-

position, will therefore indicate a role for natural selection in

driving this variation. In other words, it would indicate that

certain environmental factors select for certain nucleotide

compositions.

Several studies have investigated whether certain envi-

ronmental factors provoke distinct GC-levels. Correlations

between GC-content and aerobiosis, environmental temper-

ature, radiation levels, or the presence of exogenous entities

have been noted (Moran 2002; Naya et al. 2002; Basak and

Ghosh 2005; Navarre et al. 2006; Matallana-Surget et al.

2008; Mendez et al. 2010; Raghavan et al. 2012; Wu et al.

2012). Evidence for the influence of specific environmental

factors on GC-content remains inconclusive (Galtier and

Lobry 1997; Bentley and Parkhill 2004; Basak and Ghosh

2005; Wang et al. 2006; Zhao et al. 2007; Hildebrand et al.

2010; Chen et al. 2013; Agashe and Shankar 2014).

In order to determine whether the environment is a

contributing factor to DNA composition, it is highly useful to

compare the GC-content of microbes extracted from a broad

array of environments. The recent availability of shotgun se-

quenced metagenomic data allows for such an examination.

A previous study from Foerstner et al. (2005) utilized four

metagenomic data sets extracted from an equal number of

radically distinct environments: Ocean surface water, farm

soil, mine drainage biofilm, and deep sea whale carcass.

Using these data sets, Foerstner et al. demonstrated that the

bacterial community in one environment carried a GC signa-

ture that was distinct from bacterial communities in the other

environments. As these signatures could not be entirely ex-

plained by environmental differences in phylogenetic compo-

sition, they concluded that the environment was responsible

for the observed inter-environmental variation in nucleotide

composition. However, a major drawback to their research

was the limited number of available metagenomic samples.

This allowed Foerstner et al. to compare only between one or

two samples extracted from four very different environments.

Thus, both due to the paucity of their examples and because

they could not compare between samples extracted from

more similar environments, the generality of their results

was unclear. Specifically, they missed the complexity of phy-

logenetic and environmental impacts we describe here.

Employing numerous shotgun-sequenced data sets as well

as data from all currently available fully sequenced genomes,

we show that both phylogeny and environment influence

prokaryotic nucleotide composition. First, we show that,

across environments, different phyla have distinct nucleotide

compositions. We then show that GC-levels vary by environ-

ment in a manner that cannot be explained solely by differ-

ences in phylogenetic composition. Furthermore, we observed

that environmentally influenced variation in GC-composition

is found not only between drastically different environments,

such as soil and water, but also within samples of a single type

of environment (e.g., in our analysis of multiple human gut

samples). Thus, the environmental factors influencing nucleo-

tide content seem to be far subtler than previously

appreciated.

Materials and Methods

Data Sources

Shotgun-sequenced fasta files from numerous environments

were obtained from MG-Rast (Meyer et al. 2008). Details of

each project’s methodology, metadata, and geographic loca-

tion can be found here: http://simlab.biomed.drexel.

edu/maps/GC_map.php (Edwards et al. 2006; Wegley et al.

2007; Desnues et al. 2008; Dinsdale, Edwards, et al. 2008;

Dinsdale, Pantos, et al. 2008; Kunin et al. 2008; Mou et al.

2008; Angly et al. 2009; Rodriguez-Brito et al. 2010; Swan

et al. 2010; Belda-Ferre et al. 2012; Pride et al. 2012;

Yatsunenko et al. 2012). The files were downloaded at the

screened level in the analysis process, which should have ex-

cluded ambiguous reads, short sequence reads, low quality
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scores, and redundant sequences. Additionally, reads shorter

than 100 bp were removed from consideration. The remaining

reads were then taxonomically classified (from the level of

phylum to that of genus) using the PhymmBL software

(Brady and Salzberg 2009, 2011). Reads classified at the

phylum level with a confidence score of 80% or higher

were then analyzed for their GC-content. In totum, 33

unique prokaryotic phyla were identified and their relative

abundance was calculated for each data set. Using the

relative abundance, attention was focused on the ten

phyla that consistently appeared to be most prevalent

across all data sets. These phyla included two archaea,

Euryarchaeota and Crenarchaeota along with eight

bacterial phyla (Actinobacteria, Bacteroidetes, Chlamydiae,

Deinococcus-Thermus, Firmicutes, Proteobacteria, Spiro-

chaetes, and Tenericutes).

Full genome sequences and their taxonomic classifications

were downloaded in October 2014 from the NCBI (National

Center for Biotechnology Information) microbial database

(Pruitt et al. 2007).

In order to examine the levels of sequence variation of

orthologous protein pairs within each phylum, we used the

POGO database (Lan et al. 2014).

Assessing Genus-Level Similarity between Environments

In order to assess how similar two environments were in the

identities of the genera they contained, sequences within each

environment were classified at the genera level. We then

created for each environment a list of the genera that were

present within that environment. The lists from different en-

vironments were compared by calculating the Jaccard similar-

ity coefficient, which is defined as the union of the two sets

(how many genera are contained within the two environ-

ments together) divided by the intersection of the two sets

(how many genera are shared by the two environments)

(eq. 1) (Levandowsky and Winter 1971).

JaccardðEnvironmentA; EnvironmentBÞ

¼
jEnvironmentA \ EnvironmentBj

jEnvironmentA [ EnvironmentBj
:

ð1Þ

Annotation of Protein-Coding Genes and Extraction of
4-Fold Degenerate Third-Codon Positions

Sequences with a confidence score (PhymmBL)� 80% were

run through FragGeneScan for gene detection (Rho et al.

2010). Each successfully annotated sequence was examined

for the location of those amino acids with 4-fold redundancies

(Alanine, Arginine, Glycine, Leucine, Proline, Serine,

Threonine, and Valine). Third-codon positions of these

codons were then extracted for GC-content calculations.

The similarity analysis, Wilcoxon Rank Sum Test (Mann–

Whitney–Wilcoxon), and hypergeometric probability were

done in Python, all other statistical analyses were performed

with the R-statistical package (van Rossum 1995; R Core Team

2013).

Results

Mean GC-Content and Degree of Variation in
GC-Content Vary Greatly between Prokaryotic Phyla

Taxonomic analysis and GC-content assessment were per-

formed on over 31 million sequences from 183 shotgun-se-

quenced metagenomic data sets, which were taken from 14

types of environments (table 1). The number of data sets

along with the raw and relative abundance of sequences for

the ten phyla which were the most abundant across all envi-

ronments (see Materials and Methods) can be seen in table 1

and figure 1. Supplementary figure S1, Supplementary

Material online, contains the plots for the distribution of

GC% by taxon in each environment.

Based on mean GC-content, phyla could be classified into

one of three categories: GC-rich (Actinobacteria: 62.1%,

Deinococcus-Thermus: 64.4%), GC-intermediate (Crenarch-

aeota: 49.7%, Euryarchaeota: 53.7%, Proteobacteria:

56.4%), and GC-poor (Bacteroidetes: 46.0%, Chlamy-

diae: 40.3%, Firmicutes: 43.1%, Spirochaetes: 40.6%, Tener-

icutes: 32.2%). The GC composition of the phyla within the

metagenomic data sets coincided with those of the referential

fully sequenced genomes of the same phyla (supplementary

fig. S3, Supplementary Material online). A phylogenetic tree

based on species from the selected phyla and represents the

relationship from one phylum to another can be seen in sup-

plementary figure S4, Supplementary Material online (Letunic

and Bork 2011; Sharpton 2014).

Levels of variation in GC-content around the calculated

mean also differed greatly among the phyla. Certain phyla

Table 1

Number of Data Sets and Sequences by Environment

Environment Number of Data Sets Number of Sequencesa

Chicken Cecum 2 384,676

Contaminated Soil 3 3,654,826

Coral 7 427,591

Cow Rumen 3 490,767

Dental Plaque 8 1,725,397

Fish Slime 2 80,878

Fish Gut 2 57,122

Human Gut 111 16,047,825

Microbialites 13 515,358

Tundra 1 5,894,070

Water Marine 13 810,607

Water Mine 2 359,534

Water PondFresh 4 325,037

Water PondSaline 12 665,214

Total 183 31,438,902

aNumber of classified sequences.
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showed great variability in their range of GC-levels (e.g.,

Spirochaetes: ±11.8) whereas other phyla had moderate con-

sistency (e.g., Tenericutes: ±8.9). Strikingly, Chlamydiae and

Deinococcus-Thermus seemed highly impervious to their sur-

roundings and maintained a very restricted GC-composition

with a standard deviation of approximately ±5.5 and ±5.9,

respectively. Whether a certain phylum had a broad or narrow

range of GC-compositions, it tended to be consistent across

environments (supplementary fig. S1, Supplementary Material

online). In other words, phyla that had a broad range of

GC-compositions in one environment tended to have a simi-

larly broad range in all remaining environments, whereas

phyla that had a narrow range tended to consistently present

a narrow range in the other environments.

The homogeneous GC-levels seen, respectively, within

Chlamydiae and Deinococcus-Thermus could be the result

of low sequence divergence between members of these

phyla. To examine this possibility, we calculated the average

amino acid identity (AAI) levels of orthologous protein-coding

genes belonging to fully sequenced members of each phyla

(supplementary fig. S5, Supplementary Material online). The

plots show that for Chlamydiae and Deinococcus-Thermus,

there are numerous genome pairs that are highly diverged.

Levels of divergence do not seem to be lower for these phyla

than for other phyla that have much higher GC-ranges. These

results suggest that low levels of nucleotide content variation

within these lineages are not due to low levels of sequence

variation within the same lineages.

GC-Content Varies across Environments in a Manner that
Cannot Be Explained by Differences in Phylogeny

As can be seen in figure 2 and its corresponding box plot in

supplementary figure S2, Supplementary Material online,

GC-levels vary by environment. To rule out the possibility

that variation in GC-composition between environments

could be explained entirely by differences in phylogenetic

composition, we examined whether the nucleotide content

of different phyla correlated across environments. Such corre-

lations would indicate that whatever force influenced the

nucleotide content in one phylum had a similar effect on

the nucleotide content of the remaining phyla. This would

demonstrate that variation in GC-content between environ-

mental categories was not the sole result of distinct phyloge-

netic compositions in different metagenomic samples. Rather,

it would indicate that phyla were affected by their environ-

ment in a similar, correlated manner.

To determine whether there was a correlative relationship

between the GC-content of each phyla, the Spearman corre-

lation coefficients (with significance) were calculated. We first

looked at the correlations (table 2A) for the binned mean

GC-values for each phylum (n = 10) in every data set

(n = 183). The GC-contents of all phyla were significantly cor-

related (P� 0.05) to those of other phyla, much more often

than the 5% expected by chance. The GC-content of

Deinococcus-Thermus was significantly correlated to that

of other phyla in 56% of all cases. The GC-contents of the

remaining phyla were significantly correlated to those of the

remaining phyla 78–100% of the time (table 2A).

Many of the samples analyzed were extracted from a single

type of environment, the human gut. In order to examine

whether environmental factors impose variability in nucleotide

content even within a similar type of environment, we recal-

culated the above described correlations using only the 111

human gut samples. We found that even when looking only

within one type of environment GC-content of different phyla

correlates much more frequently than expected by chance

(table 2B). This was least true for Deinococcus-Thermus that

had GC-content levels that correlated significantly with only

those of one other phylum, and for Actinobacteria that

FIG. 2.—Average GC-composition by environment. The GC-composi-

tion was averaged across the ten phyla found to be most abundant across

all sampled biomes in an environmental category.

FIG. 1.—Relative abundance of each phylum within the various

sampled environments.
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showed significant correlations with only three other phyla

(33%). However, the remaining eight phyla had GC-contents

that were significantly correlated to those of other phyla in a

minimum of 66.7% of the cases.

Because the human gut samples constituted the majority of

our data sets, we removed gut samples from consideration to

quantify the contribution of the other environment types

to observed correlations (table 2C). Once gut samples were

removed, the percentage of correlations for all phyla that

were significantly correlated ranged between 67% and

89% (table 2C and supplementary table S3, Supplementary

Material online).

To ensure that the observed correlative effects were not

caused by outliers, the analysis was rerun in the same manner

as before except that sequences were removed if their

GC-content value fell outside the interquartile region for

each phylum (see supplementary table S1, Supplementary

Material online). Results remained consistent, in that for all

phyla, GC-contents significantly correlated with those of

other phyla much more frequently than expected by chance

(supplementary table S3, Supplementary Material online). For

analysis involving all samples, significant correlations were

observed in between 55.6% and 100% of the cases, for

the different phyla examined (supplementary table S1A,

Supplementary Material online). When looking at correlations

for only human gut datasets, Deinococcus-Thermus (11.1%),

Actinobacteria (22.2%), and Tenericutes (22.2%) had the

lowest number of significant correlations. For the remaining

phyla, significant correlations were observed between 55.6%

and 77.8% of cases (supplementary table S1B,

Table 2

Spearman Correlation Coefficients for (A) All Environments, (B) Human Gut Environment, and (C) All Environments minus the Human Gut

Act Bact Chl Cren DT Eury Firm Pro Spiro Ten

(A)

Act 1 0.169* �0.084 0.216* 0.661* 0.56* 0.032 0.56* �0.203* �0.213*

Bact 0.169* 1 0.544* 0.458* 0.161* 0.596* 0.758* 0.607* 0.661* 0.26*

Chl �0.084 0.544* 1 0.429* �0.108 0.325* 0.614* 0.235* 0.688* 0.457*

Cren 0.216* 0.458* 0.429* 1 0.121 0.683* 0.265* 0.296* 0.318* 0.259*

DT 0.661* 0.161* �0.108 0.121 1 0.304* 0.104 0.394* �0.13 �0.227*

Eury 0.56* 0.596* 0.325* 0.683* 0.304* 1 0.296* 0.621* 0.249* 0.137

Firm 0.032 0.758* 0.614* 0.265* 0.104 0.296* 1 0.477* 0.774* 0.366*

Pro 0.56* 0.607* 0.235* 0.296* 0.394* 0.621* 0.477* 1 0.245* �0.067

Spiro �0.203* 0.661* 0.688* 0.318* �0.13 0.249* 0.774* 0.245* 1 0.601*

Ten �0.213* 0.26* 0.457* 0.259* �0.227* 0.137 0.366* �0.067 0.601* 1

(B)

Act 1 0.016 0.085 0.048 0.444* 0.248* 0.056 0.394* 0.075 0.063

Bact 0.016 1 0.575* 0.759* 0.022 0.716* 0.627* 0.51* 0.804* 0.347*

Chl 0.085 0.575* 1 0.637* �0.008 0.566* 0.555* 0.282* 0.725* 0.349*

Cren 0.048 0.759* 0.637* 1 �0.048 0.717* 0.559* 0.423* 0.779* 0.441*

DT 0.444* 0.022 �0.008 �0.048 1 �0.052 0.166 0.094 �0.023 �0.089

Eury 0.248* 0.716* 0.566* 0.717* �0.052 1 0.455* 0.528* 0.749* 0.497*

Firm 0.056 0.627* 0.555* 0.559* 0.166 0.455* 1 0.412* 0.779* 0.381*

Pro 0.394* 0.51* 0.282* 0.423* 0.094 0.528* 0.412* 1 0.489* 0.125

Spiro 0.075 0.804* 0.725* 0.779* �0.023 0.749* 0.779* 0.489* 1 0.49*

Ten 0.063 0.347* 0.349* 0.441* �0.089 0.497* 0.381* 0.125 0.49* 1

(C)

Act 1 0.554* �0.015 �0.003 0.753* 0.792* 0.485* 0.803* 0.08 �0.266*

Bact 0.554* 1 0.431* 0.386* 0.368* 0.779* 0.908* 0.719* 0.557* 0.139

Chl �0.015 0.431* 1 0.636* �0.082 0.337* 0.525* 0.124 0.658* 0.558*

Cren �0.003 0.386* 0.636* 1 0.033 0.361* 0.422* 0.105 0.539* 0.478*

DT 0.753* 0.368* �0.082 0.033 1 0.524* 0.298* 0.584* 0.042 �0.233*

Eury 0.792* 0.779* 0.337* 0.361* 0.524* 1 0.699* 0.815* 0.412* 0.067

Firm 0.485* 0.908* 0.525* 0.422* 0.298* 0.699* 1 0.693* 0.587* 0.195

Pro 0.803* 0.719* 0.124 0.105 0.584* 0.815* 0.693* 1 0.183 �0.254*

Spiro 0.08 0.557* 0.658* 0.539* 0.042 0.412* 0.587* 0.183 1 0.664*

Ten �0.266* 0.139 0.558* 0.478* �0.233* 0.067 0.195 �0.254* 0.664* 1

NOTE.—Act, Actinobacteria; Bact, Bacteroidetes; Chl, Chlamydiae; Cren, Crenarchaeota; DT, Deinococcus-Thermus; Eury, Euryarchaeota; Firm, Firmicutes; Pro,
Proteobacteria; Spiro, Spirochaetes; Ten, Tenericutes. Asterisk denotes statistical significance (P< 0.05, according to the Spearman Correlation test).
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Supplementary Material online). Excluding the human

gut datasets from the analysis, with the exception of

Tenericutes (22.2%), the GC-contents of all phyla were sig-

nificantly correlated between 55.6% and 88.9% of the time

(supplementary table S1C, Supplementary Material online).

Finally, to examine whether these results could be re-

lated to some artifact due to amino acid usage, we anno-

tated the sequences extracted from the different samples

and identified protein-coding sequences. This allowed us to

calculate the GC-contents of third-codon positions of

4-fold degenerate codons and examine whether these

GC-contents were also correlated between phyla across

environments. The third-codon positions of 4-fold degen-

erate codons do not affect the amino acid sequence of a

protein. Therefore, their nucleotide content should not be

affected by selection at the level of amino acid usage. We

found similar results to those reported above. In other

words, the GC-content of third-codon positions of 4-fold

degenerate codons within protein-coding genes is corre-

lated between phyla across environments much more fre-

quently than the 5% expected by chance (supplementary

table S2, Supplementary Material online). When correla-

tions were calculated across all samples, the percentage

of significant correlations ranged between 66.7% and

100% for the different phyla examined (supplementary

table S2A, Supplementary Material online). When only

the human gut datasets were considered, the GC-contents

of Tenericutes were significantly correlated to those of one

phylum (11.1%). The GC-contents of the remaining phyla

were found to be significantly correlated to those of

between 55.6% and 88.9% of the other phyla (supple-

mentary table S2B, Supplementary Material online).

Lastly, when excluding the human gut datasets, the GC-

contents of 4-fold degenerate 3rd codon positions

were significantly correlated for 55.6%–100% of compar-

isons with the exception of Tenericutes (22.2%) (supple-

mentary tables S2B and S3, Supplementary Material

online).

Combined, these results demonstrate that whether we

look across different environment types, or within one type

of environment (the human gut) the GC-contents of different

phyla correlate across samples much more frequently than

would be expected by chance. These results remain consis-

tent whether the entire sequence is used to calculate GC-

content, or whether one uses only the 4-fold degenerate

third-codon positions of protein-coding sequences. These re-

sults also remain consistent when GC-content outliers are

removed from consideration. Such results would only be ex-

pected if environmental differences between samples influ-

ence the nucleotide content of each phylum in a correlated

manner. It is striking that such nucleotide content affecting

environmental differences exists not only between diverse

environmental types but also within a single type of

environment.

Different Environments Do Not Differ by the Genera
They Contain

The correlations in the GC-contents of different phylogenetic

taxa across environments were performed at the phyla level.

This was due to a constraint imposed on us. Namely, that we

cannot reliably classify metagenomic short reads at lower

levels of taxonomy. It is thus not feasible for us to examine

whether GC-contents of different genera or species correlate

across environments. We could therefore not elucidate the

taxonomic level at which these correlations are determined.

It is for example, possible that a certain environment that

favors GC-richness, would not allow certain species to colo-

nize that environment (as we assume that members of a spe-

cies are too similar to each other to allow for much variation in

nucleotide composition). However, genera may be allowed to

persist through their members that are more GC-rich.

Although we cannot reliably classify individual sequences at

taxonomic levels much lower than phylum, we hope that clas-

sifications will be reliable enough to allow us to examine

which genera are present within each sample (without at-

tempting to estimate their relative abundance). This should

allow us to at least examine whether genera tend to be ex-

cluded from environments entirely. To do so, we used the

relatively unreliable genus-level taxonomic information to ex-

amine how similar environments were by the genera they

contained. In this respect, we found no large differences

between environments. The largest observed difference was

between Fish Gut and the Coral, which contained 97.9% of

the same genera (supplementary table S4, Supplementary

Material online). All remaining samples were at least 98%

identical in the identity of the genera they contained. These

results imply that selection on nucleotide composition very

rarely if at all removes entire genera from the environment.

We anticipate that this can be more carefully verified in

the near future, when sequencing will yield longer reads

which will improve the accuracy of the lower-taxonomic

classifications.

Human Gut Samples that Are Dominated by
Actinobacteria Tend to Be More GC-Rich than Other
Human Gut Samples

When examining the phylogenetic classification of different

human gut samples it became clear that these could be di-

vided into two groups: Those that were dominated by

Actinobacteria and those in which the most prevalent phyla

were Bacteroidetes, Firmicutes, and Proteobacteria (fig. 3).

This led us to ask whether the gut samples dominated by

Actinobacteria (a highly GC-rich phylum) tended to differ in

nucleotide composition from the other samples. To address

this question, we ranked the human gut samples separately

based on their abundance of Actinobacteria and based on the

GC-richness of each of the ten examined phyla. We then

found that the 24 (top 22%) samples that had at least 50%

Environment and Phylogeny Shape GC-Content GBE
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relative abundance of Actinobacteria tended to be signifi-

cantly enriched (when compared with a hypergeometric dis-

tribution) for the gut samples with high GC-content in nine

out of the ten examined phyla (table 3A). We also examined

the same question using a different statistical test. We com-

pared the average GC-content of each phylum, within the

22% of gut samples in which Actinobacteria were most abun-

dant, with its average GC-content in the remaining gut

samples. This comparison showed that, for seven of the ten

examined phyla, GC-content was significantly higher within

the Actinobacteria-rich gut samples, compared to the gut

samples that were less rich in Actinobacteria (P� 0.05, ac-

cording to a Mann–Whitney test, table 3B). Together, these

results suggest that environments dominated by

Actinobacteria tend to be ones in which selection exists for

higher GC-content, across many, if not all phyla.

Discussion

The results presented here demonstrate that both phylogeny

and environment contribute to the determination of prokary-

otic nucleotide content.

Our first finding is that different phyla are characterized by

different mean GC-contents and that some phyla are charac-

terized by a much broader GC-content range than others.

These averages and possible ranges of nucleotide composi-

tions are, to a large extent, maintained across different envi-

ronments. By examining the sequence variation of fully

sequenced members of each phylum, we could show that

even phyla with very low levels of nucleotide content variation

were often highly variable in their sequences. Thus, low levels

of nucleotide content variation within certain phyla could not

be explained by low levels of sequence variation within these

phyla. A caveat must be added because the range of strains

sequenced for each phylum might be limited and because

sequences are not selected at random for whole-genome se-

quencing. It therefore becomes possible that strains exist of

those phyla for which we observed low levels of nucleotide

content variation that have very different nucleotide contents.

However, the range of nucleotide contents observed for each

phylum was largely maintained both within fully sequenced

genomes and within metagenomic sequences extracted from

each of the diverse environments sampled. In order for previ-

ously unknown members of a phylum to be outside of the

range of GC-contents calculated for that phylum from the

metagenomic samples, they would have to be diverged

enough from the sequenced members of that phylum so as

not to be assigned to the same phyla. This seems less likely to

us. At a minimum, we show that for all known members of

certain phyla (and for all their relatives that are closely enough

related so as to be classified to these phyla from short meta-

genomic reads), there are low levels of nucleotide content

variation that cannot be explained by low levels of sequence

diversity.

At the same time, and perhaps even more interestingly, our

results show that GC-content varied across environments in a

manner that is correlated across prokaryotic phyla. This sug-

gests that whatever force influenced the nucleotide

FIG. 3.—Relative abundance of the ten most abundant phyla in the human gut samples.
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composition of one phylum influenced that of the others.

Therefore, variation in nucleotide composition does not

stem entirely from differences in phylogeny. Rather, it is prob-

able that the environment exerts some sort of pressure which

acts upon all phyla to influence the GC-content in the same

direction. We see that environmentally shaped differences in

GC-content were apparent when radically different environ-

ments were considered and when we examined different

samples extracted from a single type of environment (the

human gut). Thus, it would appear that the environmental

factors which shape nucleotide content vary not only

among largely different environments such as soil versus

water versus the human microbiome but also within a single

type of environment.

It is not yet known what attributes are responsible for de-

termining the range of GC-compositions of the different

phyla. It is unlikely that members of a given phylum face

consistent selection to maintain similar nucleotide composi-

tion ranges across all environments. Therefore, it appears

more likely that the average and range of nucleotide compo-

sitions adoptable by members of a given phylum would be

determined by neutral processes. It has long been assumed

that different phyla would have different nucleotide compo-

sitions due to differences in mutational biases. However, more

recently it was demonstrated that even in GC-rich prokary-

otes, mutation is universally AT-biased (Hershberg and Petrov

2010; Hildebrand et al. 2010). Mutation is however, not the

only neutral process that could explain differences in prokary-

otic nucleotide composition. It is possible that different phyla

encode, or in some cases, do not encode the various mecha-

nisms that allow them to modulate nucleotide content in the

face of AT-biased mutation. For example, as described in the

introduction, it has been demonstrated that gene conversion

is GC-biased in many eukaryotes—including humans and

other mammals (Duret and Galtier 2009). Additionally, some

evidence exists for similar BGC occurring in Escherichia coli

and additional bacteria (Touchon et al. 2009; Lassalle et al.

2015). Such a BGC mechanism may exist in some but not all

prokaryotic phyla, and may be more or less GC-biased in dif-

ferent phyla. Furthermore, different phyla may experience

lower or higher recombination rates. Such differences be-

tween phyla may lead to differences in their range of possible

GC-compositions. However, much more research is necessary

to determine why phyla vary so greatly in their nucleotide

composition.

This study provides evidence for environmental effects on

nucleotide composition. However, we still do not know which

environmental factors affect GC-content. Past studies have

attempted to link different environmental factors to the nu-

cleotide composition of microbes. One of the most obvious

factors thought to influence GC-content was selection on

genome stability exerted by high temperatures. Prokaryotes

living in high temperatures may need to maintain higher GC-

levels, because these may provide better genome stability

when temperatures are elevated. Yet, the environmentally

influenced differences we observe between nucleotide con-

tent within the gut clearly cannot be explained by differences

in temperature. After all, different human guts are not ex-

pected to vary greatly when it comes to temperature. It also

seems unlikely that any other simple environmental factor,

such as differences in pH, or salinity would entirely explain

the environmentally driven variation in nucleotide content

we observed.

Our results demonstrate that selection exerted by the

environment likely influences nucleotide composition. This

suggests that nucleotide content is a selected trait.

The observation that variation in GC-content among different

human gut samples is environmentally influenced raises the

subject of evolutionary time. Nucleotide content is a relatively

slowly evolving trait. Ultimately, a large number of mutations

is required to significantly alter GC-composition. If within a

Table 3

Within the Human Gut, High Abundance of the GC-Rich Phylum

Actinobacteria Is Associated with Higher GC-Contents of Most Other

Phyla: (A) Hypergeometric Probability and (B) Mann–Whitney–Wilcoxon

P values for Each Phylum Comparing the Mean GC-Content for the

Top 22% Guts with the Bottom 78% Guts Ordered by

Actinobacteria Abundance

(A) No. of Top 24 Most Actinobacteria-Rich

Samples that Are Most GC-Rich

(hypergeometric P values)

Actinobacteria (GC) 9 (0.026)

Bacteroidetes (GC) 10 (0.008)

Chlamydiae (GC) 11 (0.002)

Crenarchaeota (GC) 11 (0.002)

Deinococcus-Thermus (GC) 9 (0.026)

Euryarchaeota (GC) 16 (0)

Firmicutes (GC) 5 (0.220)

Proteobacteria (GC) 9 (0.026)

Spirochaetes (GC) 11 (0.002)

Tenericutes (GC) 10 (0.008)

(B) Mann–Whitney–Wilcoxon P Values

Actinobacteria 7.4e-6

Bacteroidetes 6.4e-4

Chlamydiae 2.4e-4

Crenarchaeota 1.6e-4

Deinococcus-Thermus 0.257

Euryarchaeota 1.8e-10

Firmicutes 0.198

Proteobacteria 3.0e-4

Spirochaetes 5.2e-4

Tenericutes 0.077

NOTE.—Number of guts that are dominated by Actinobacteria (24 data
sets =~22%) of GC-content for each phylum out of the 24 guts with the highest
Actinobacteria abundance. In parenthesis is the P value of the hypergeometric
distribution. This indicates the likelihood that such overabundance is possible by
chance.
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certain environment there is selection on prokaryotes to be

more GC-rich than in other environments, will prokaryotes

have time to evolve toward that GC-content when they are

already inside the environment? A second possibility is that

selection acts at the moment of introduction into an environ-

ment. A specific prokaryote with a nucleotide composition

that clashes greatly with the optimal level of a given environ-

ment may not be able to colonize that environment in the first

place. If this is indeed the case, we would expect to see that

certain species of prokaryotes may be excluded from certain

environments, due to their mismatched nucleotide composi-

tion. It is not currently possible to reliably characterize the

phylogeny of short metagenomic reads to the species level.

However, when we looked at whether different environments

differed greatly in their genera, we found no large differences.

We can therefore say that it appears that entire genera are not

categorically excluded from environments based on nucleo-

tide composition. However, we cannot currently estimate the

extent to which the relative abundance of different genera is

influenced by selection at the level of nucleotide composition.

Advances in sequencing technology should soon allow for

longer read length. This in turn should make it possible to

more reliably classify phylogeny within metagenomes down

to the genera and even species-level. Once this occurs, we

should be able to examine possible fluctuations in the abun-

dance of different genera and how these relate to nucleotide

composition. We will also be able to investigate whether cer-

tain species are excluded from environments due to their nu-

cleotide composition.

Within human guts, we found significant differences in

nucleotide composition between those guts that were

dominated by Actinobacteria, and those guts that were dom-

inated by Firmicutes, Bacteroidetes and Proteobacteria. We

found that in Actinobacteria-dominated gut samples, other

phyla—even those that were AT-rich—tended to be relatively

more GC-rich than those in the remaining gut samples. This

trend could be explained in two ways. First, it is possible that

the high abundance of Actinobacteria itself selects for the GC-

richness of other phyla. Second, it is possible that both the

higher abundance of Actinobacteria and the elevated GC-

content of the other phyla are the result of some characteristic

of these guts. For example, it is possible that the environmen-

tal factor or factors that select for GC-richness increase the

abundance of Actinobacteria (because they are highly GC-rich

in general), and skew the remaining, less-abundant phyla

to be more GC-rich. If the later scenario is correct, it implies

that selection on nucleotide composition may be a factor

affecting prokaryotic phylogenetic composition within certain

environments.

To conclude, our results demonstrate that although phy-

logeny is associated with a specific prokaryotic nucleotide

composition, the environment strongly influences that com-

position. Combined, phylogeny and environment direct the

GC-content seen in an environment. Different phyla are

more or less flexible with regards to the amounts of change

in nucleotide composition they can accommodate. Within the

range possible for a certain phyla, environment seems to de-

termine whether their GC-content will be higher or lower.

Both sharp differences in environment type (e.g., soil vs. aqua-

tic vs. human microbiome) as well as more subtle environment

differences (as those observed between different human guts)

significantly influence nucleotide content. Thus, the environ-

mental factors affecting nucleotide composition vary not only

between highly different environments but also between

more similar ones.

Supplementary Material

Supplementary tables S1–S4 and figures S1–S5 are available

at Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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