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Community structure and its detection in complex networks has been the subject of many studies in the
recent years. Towards this goal, we have created a novel approach based on the analysis of the motion of
a memory-biased random walker, i.e. an entity that traverses the network with some tendency to follow or
avoid pathways it has previously traversed. We found that the walker tends to remain inside communities,
that is, subsets of the network nodes which are more connected to each other, rather than to the rest of
the network. Based on this trait of the MBRW we developed a method to detect communities and tested
its performance on a range of networks with different levels of community structure. In all tested cases,
the method proved to be at least as effective as Girvan–Newman or Infomap while outperforming them
when communities were less well defined.

Keywords: memory-biased random walker (MBRW); community detection; module density; cored
networks.

1. Introduction

Networks are often used to describe the overall set of interactions in complex biological or social sys-
tems [1,2]. Such a holistic view of these systems is quite useful to understand system-wide processes,
but it conflates the local interactions necessary for understanding of emergence of dynamic behaviour
in societies, cells or multi-cellular organisms. To resolve its local interactions, we must ask how a net-
work is segregated. Are there common rules of action in networks that allow segregation as an emergent
phenomenon of action on the network? We suggest here a novel approach based on the stochastic move-
ment of an entity on the network. The movement of an entity can be seen as a metaphor of information
flow from a node to one of its neighbours and modelled as a sequence of local events governed by a
memory of size s which biases by a factor α the likelihood of leaving a node by the remembered path.
That memory capacity defines the timeframe within which the entity tends to retrace the paths it had
recently travelled. In this work, we show that a random walk with a propensity to retrace its own recent
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steps tends to converge to relatively dense network neighbourhoods and can be used to uncover the
network communities [3,4].

Several groups have tried to develop algorithms to detect communities within a given network with
respect to a chosen objective function as the quality measure of the extracted communities [3–9]. The
most popular classes of community detection methodologies originate from the Girvan and Newman’s
divisive algorithm [3], spectral analysis [4,10,11] and flow-based approaches such as the map equation
[12–15]. The first two of these classes are based on analysis of static networks. Although, in reality
communities typically emerge from a continues dynamic process running on the network, topology-
based algorithms rely on the information that comes from the structure of the network alone and not
the dynamics on it. As a flow-based framework, the map equation could be considered to be capturing
the modularity organization of a network from random movement. However, the existing techniques
that use a map equation (e.g. Infomap’s method [12]) rely on a stationary distribution of node visits
of a random walker rather than actually simulating the walker’s movement empirically. By doing so
they lose valuable information about the transient state of the random walk movement. Our dynamical
approach, on the other hand, deduces the spatio-temporal patterns of local interactions that constitute
the network modules. Instead of relying on the information embedded in the static network or in the
stationary distribution of the walkers’ positions [12–15], our algorithm makes use of the trajectories of
an entity continuously traversing the network along memory-biased paths.

Previous studies have shown that purely random graph surfing results in high correlation between
nodes’ degrees and the frequency of their being visited [16]. We show here that by adding a small
bias towards the recently visited nodes, the entity’s random motion starts to preferentially move on
the core network elements with higher ratio of intra vs. inter-connectedness, and not simply on most
connected nodes overall. Such nodes comprise the network’s community-like structural elements and
are often thought to be important features or functional modules in networks [12,13,17–22]. Here we
show that the patterns of motion in a memory-driven random walk are indicative of the underlying
network community structure. We designed a memory-biased random walker (MBRW), and created a
random walk-biased community detection method that performs as well as, if not better than existing
methods. The method particularly excels in detecting low-quality community elements, the kinds of
network communities whose ratio of intra-links to inter-links is not as high as the intra-/inter-links ratio
of well-defined theoretical communities one can find, for example, in Girvan–Newman networks [3].
This is an important result for uncovering the community structures of the real-world networks since
such structures are mostly ambiguous in their community configuration [17].

2. Methods

2.1 Analysing MBRW paths to identify communities

Our community detection method identifies network communities using spectral analysis of their tran-
sition matrixes, weighted according to the patterns of motion generated by simulation of a MBRW.
The analysis relies on identification of the recurrent sub-paths of the entity moving on networks. For
instance, a path can be defined as a sequence of nodes visited by such randomly moving entity:

Path : [1, 5, 2, 1, 4, 7, 1, 5, 8, 1, 5, 8, 1, 5, 8, 12, 7, 1, 5]

The sequence of nodes contains repeating sub-path of size 3 (highlighted in the vector above). Such
path can be used to compute the probabilities of relocation from a node (e.g. Node 1) to each of its
neighbours (Nodes 3–5). The transition probabilities correspond to the transition frequencies inferred
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from the recurrent sequences of steps. In the case above, the frequencies are:

w1,3 = 0, w1,4 = 0, w1,5 = 3

By definition, any two nodes belonging to the same community are expected to have more common
neighbours than any two belonging to different communities. To reduce the probability of taking the
inter-community link transitions into account, we thus counted the transitions between pairs of con-
nected nodes only if they have at least 2 common nearest neighbours. Considering also the hetero-
geneous visiting distribution of the nodes, we constructed the transition matrix as T = K−1Wi,j where
Kii =

∑
j Wij and Wij = wij/

∑
l wil. Application of the spectral analysis to the normalized version of

the transition matrix yields the community structure from the leading eigenvector resulting in the best
clustering in terms of module density (as defined below) for the community number known a priori
(or some other metric to find optimum community number). For clustering the eigenvector coefficients,
we simply used the largest Mn gaps between the consecutive members of the sorted eigenvector coeffi-
cients to determine the cutting regions of the sorted coefficient sequence where Mn being the number of
communities to be clustered.

2.2 Simulating MBRW on artificial and real world networks

We used a hybrid Gillespie algorithm, originally developed to describe the time evolution of chemical
reaction systems [23,24], to simulate MBRW on the networks. At each step of this discrete movement,
the entity occupying one of the network nodes moves to one of its immediate neighbours (Fig. 1). Given
a memory capacity of size s, the entity faced with a choice of its destination among the few neighbours
is inclined to revisit the nodes visited during the last s steps of the simulation. We prohibit backward
movement, i.e. the return to the just visited node, to prevent repeating oscillation of the entity between a
pair of connected nodes (in the Section 2.5.1 we explained how we deal with single-linked nodes which
would be dead ends for the non-backtracking entity in this algorithm). Each simulation is performed
with a fixed non-negative memory of size s and starts with the entity placed at a random node. Each step
for the entity is chosen randomly based on a probability distribution vector inferred from the frequency
of visits of the recent s steps of the simulation. We utilize the fitness proportionate (roulette-wheel)
selection method [23–25] to infer the next step’s destination μ. More specifically, the next destination
of the entity is chosen among the current node’s neighbours so that its index μ satisfies the following
equation:

μ−1∑

v=1

av < ra0 �
μ∑

v=1

av

where r is a random number drawn from uniformly distributed unit interval and a0 and av are the sum
of all the elements of the probability distribution vector and vth element of it, respectively (note that
the probability distribution vector as defined in our methodology is normalized so that a0 = 1). Given a
random number r, the next destination of the entity is determined using the above equation by iterating
through the values of μ starting from μ = 1 and increasing it until the equation is satisfied. We account
for the memory by defining a parameter α that tunes the path bias towards the recently visited nodes. In
particular, the element v of the vector of probabilities a is defined below for the exemplary vector of

a = [a1, a2, . . . , as, . . . , an]
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Fig. 1. Spatio-temporal updating of the entity’s movement on a network according to a hybrid Gillespie algorithm. The entity,
represented by a red triangle, is shown at the node n0 having arrived from n2 following the path [n4, n0, n1, n2, n0]. The potential
directions (next nodes) for the entity, if no back-tracking is allowed, can be given as a directional vector D = [n1, n3, n4, n5].
If there is no directional bias in the movement forward, then the approach is reduced to a random walk having a corresponding
probability distribution vector of a = [0.25, 0.25, 0.25, 0.25]. On the other hand, if the entity has a memory s = 5, then the memory-
biased probability distribution vector describing the probabilities of the next steps will be a = [α/(α + 3), 1/(α + 3), 1/(α +
3), 1/(α + 3)] where α > 1 (since the entity tends to repeat its memories).

where n is the number of edges leaving the node, other than the edge arrived by (no backtracking)
and as is the probability of taking the edge last used within memory to leave the node. Here, as =
α/(α + n − 1) while all other ai |= s = 1/(α + n − 1) (see Fig. 1 for example).

Note that movement with the memory size s set to 0, the entity will perform a pure random walk,
selecting each direction with the same probability. However, even in this case, the perfect random walk
scenario is altered by the inability of the entity to revert its last step, so that the future move would be a
choice between all but one current node’s peers. We exemplify the microscopic mechanism governing
the entity movement in Fig. 1.

Termination criteria for the simulations. We measure the length of the simulation run necessary for
convergence in terms of the circulation number Cn, the number of the simulation steps necessary for the
moving entity to visit all the network nodes at least once. For example, the time it takes the walker to pay
at least one visit to all the nodes is designated as Cn = 1. At that point, we reset the visitation counters
and proceed with the simulation until all nodes are visited again (Cn = 2). To assure convergence, the
simulation was executed until the results for Cn are identical for those obtained for Cn + 1.

2.3 Analysing the movement sequence data

To monitor convergence, we defined a property, that is, module density. Traditionally, people consider
two general criteria that help quantifying the quality of a community detection: (1) the number of links
among the members of the community as a measure of how coherent its nodes are and (2) the number
of links between the members of the community and the rest of the network nodes as a measure of its
relative isolation [26]. Module density is a multiplicative combination of these two criteria. First, we
define relative connectedness (RC), a measure of intra-connectedness, as

RC = 2lin
n(n − 1)
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(a) (b)

Fig. 2. Shows two sub-networks composed of five nodes each and having the same average connectivity k = 4. The links in the
left sub-network (a) tend to be directed outward whereas the links in the right sub-network (lin = 6) (b) point mainly inward
(lin = 9). Consequently, even though the remaining parameters do not differ between the sub-networks, the difference of RC, IR
and module density between the sub-networks is significant.

where lin is the number of ties actually linking the nodes of the candidate community and n is the number
of nodes in the community. RC is in fact a density of links within the set of n nodes, ranging between
0 for a completely unconnected group of nodes and 1 for a fully connected node group (Fig. 2). The
second measure, the intra-connection ratio (IR) is defined as

IR = 2lin∑n
i ki

where ki is the connectivity of the node i. IR represents the fraction of the existing links of the group
of n nodes that are turned ‘inward’, link nodes in the group (as opposed to linking nodes outside the
group). This number would be 1 if the group is completely isolated and 0 if none of the nodes is directly
connected to any of the other nodes in the group (Fig. 2). Although RC and IR are both proportional
to lin, in the former it is a measure of the completeness of links of a node group whereas in the latter it
is a measure of the inwardness of the group links. Their product (RC × IR) is thus in the range of 0–1
providing a convenient metric all together.

Using these two measures, we define module density as their product, that is, Module Density =
RC × IR. Module density ranges between 0, representing a group of unconnected nodes (RC = 0 and
IR = 0) which may or may not have links to the nodes outside the group, and 1 for a fully connected
community (RC = 1) with no outgoing links (IR = 1) (Fig. 2). This metric differs from the Newman’s
modularity concept (a widely used quality index for communities [27]) although the two share a similar
motivation. The Newman’s modularity is based on the comparison between the fraction of the num-
ber of links between the community nodes and the number of expected links estimated from a random
graph in which each node has the same degree as the original. Such random graphs can be generated
using the well-known configuration model [28]. Due to the random model serving as a reference point,
the modularity metric suffers from the resolution limit in resolving relatively small but well-defined
communities [29]. For example, the expected number of links between two groups of nodes is typically
diminishingly low for large sparse networks. Even a single accidental link between two separated com-
munity candidates may appear highly significant if the classical modularity measure is used. This may
result in the decision to merge the communities as it would increase the overall network modularity.
As opposed to the classical modularity, the module density introduced here, does not rely on a random
null model, but uses an absolute metric for the community quality accounting for the local density and
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potential links only. Contrary to the Newman’s modularity, in the above example two small communi-
ties connected with a single link would be considered as two different communities by module density.
Their RCs would be much higher than the RC of their merged community since merging the two groups
would increase the potential intra-links dramatically. Although module density is an absolute metric,
comparison of the community module density to that of the whole network would provide relative qual-
ity of partitioning. Therefore, one can use module density as the objective function to find optimum
community numbers.

2.4 Benchmark community identification methods

In this work, we compared the performance of the MBRW with three widely accepted benchmark meth-
ods of community detection. We start by briefly describing these algorithms.

2.4.1 Girvan–Newman’s divisive algorithm. The Girvan–Newman algorithm [3] operates by gradu-
ally removing edges with the highest betweenness centrality until the network is split into the required
number of connected components. Betweenness centrality of an edge is the fraction of the shortest
paths between all node pairs that pass through that edge. Such edges tend to reside between dense
network clusters so that they would participate in the paths running between densely connected clus-
ters. Betweenness of such edges is high because shortest paths between the nodes belonging to different
communities will run through these, rather rare, intercommunity edges. The Girvan–Newman algorithm
exercises top-down hierarchical clustering by separating groups of nodes through gradual removal of
the edges with highest betweenness centrality. Note that edge betweenness must be recomputed at each
iteration because the value of betweenness depends on the entire network and changes with removal of
each edge.

2.4.2 Spectral analysis. Spectral analysis has been a broadly recognized alternative for the identifi-
cation of network clusters. In the spectral network clustering, the eigenvectors of Laplacian L or tran-
sition matrix T or some modifications of them are used to extract the underlying community structure
of a given network [4,10,11]. Transition matrix T of an adjacency matrix A is constructed as T = AD−1

giving
∑

j Tij = 1 with Tij |= 0 iff Aij = 1 where D is the diagonal matrix whose element Dii corresponds
to the degree of node i and is given by Dii =

∑
j Aij [6,30]. The matrix T contains the probabilities for

a random walker to transition from node i to node j. If there is a bias in the probabilities of possible
directions taken by the walker, one can use a generalized version of the normalized transition matrix,
given as Tij = Wij/

∑
l Wil where Wij is the weighted matrix for directional preferences [6]. For instance,

Wij is taken as the similarity of nodes i and j in the topologically biased random walk (TBRW) [4,6] and
is given by:

Wi,j = Ai,j(Gi,j + 1)

where Wi,j is the topologically weighted matrix and Gi,j is the number of common nearest neighbours
of node i and j as a measure of their similarity. According to the Frobenius–Perron theorem, numerical
proximity of the coefficients of the leading eigenvector corresponding to the second largest eigenvalue
of T mirrors the proximity of the corresponding nodes in the network [4,10,30]. Based on this, one can
cluster the network nodes by making use of an algorithm such as k-means clustering that partitions the
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set of eigenvector coefficients into a given number of clusters where each coefficient (node) belongs to
the cluster having the nearest mean [31].

2.4.3 Infomap (MapEquation). Infomap is a search algorithm operating in the map equation frame-
work to identify modular organizations of networks with long flow persistence times [12]. Being a
flow-based method, the map equation gives the theoretical lower limit of a modular description for the
movement of a random walker in a network. It exploits the relationship between exploring community-
like structures in networks and minimizing the description length of a random walker movement in
those networks [12]. The information content for describing the pathways of a random walker in a net-
work depends on the given number of communities to be explored in that network. A partition with the
shortest description length will be the one that reveals the best set of communities in the network [12].
Rather than obtaining the random walker paths from empirical movement sequences, the map equation
derives the description lengths from the stationary distribution of the random walker visits to the net-
work nodes [12,14]. Infomap, whose core idea is very similar to the Louvain algorithm, minimizes the
map equation over different partitions of networks [15]. In both approaches the main principle is to
bring together neighbouring nodes into communities, lower-level communities into higher-level ones
and so on. More specifically, Infomap starts by considering each node as a separate community. Then,
it iteratively merges connected communities into larger ones if the merge results in the largest reduc-
tion in the map equation. This process continues until no move decreases the map equation further.
Besides purely random walk, Infomap can also implement more complex mechanisms, such as higher-
order Markov models of the walker movements. Such models can capture the effects of memory on the
minimization of the description length [12]. As in the case of the random walk, the movement in the
Markovian approaches too is characterized by the theoretical stationary distribution of the movement
rather than by an empirical simulation of the movement.

We used the MapEquation web platform to conduct the Infomap community analysis of the test
networks [32].

2.5 Test networks

We tested the MBRW algorithm on several types of constructed networks, including the Girvan–
Newman network model [3], our own model of cored networks, a set of benchmark models designed for
the evaluation of community detection algorithms [17] and on a real-world protein–protein interaction
network from Caenorhabditis elegans [22]. The following section describes these networks in details.

2.5.1 Girvan–Newman networks. Girvan–Newman network model was originally designed to gen-
erate random networks with community structure and are commonly used to validate community detec-
tion algorithms [3]. The network community structure is defined by the inter- and intra-community
connectivity. More specifically, the number of inter-community links per node, kint, defines the inter-
community connection probability, pout, as pout = kint/2(N − n) where N is the total number of nodes
in the network and n is the number of nodes in the communities. Thus, pout is the probability for a
node to be connected with any other node in a different community. Together, pout, k and n define the
intra-community connection probability as pin = (k − kint)/2(n − 1). Similar to pout, pin expresses the
probability for a node to be connected with each node residing in the same community. Iteratively, the
algorithm connects pairs of nodes belonging to the same community with a probability of pin and pairs
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(a) (b)

Fig. 3. Illustration of the Girvan–Newman networks with 24 nodes and 4 equal-sized communities (a) and of cored networks with
24 nodes and a core of size 6 (circled in red) (b).

belonging to different communities with the probability pout. We generated a set of Girvan–Newman
networks of N = 128 nodes assigned to four communities of n = 32 nodes, with average degree of
k = 16 and varying number of inter-community links kint (Fig. 3(a)). The number of inter-community
links ranged from β = 1.5 to kint = 8, at which point a node had as many inter-links as intra-links. In
addition, we warranted (in Girvan–Newman and all other network models in this work) that all nodes
had a degree of at least 2. This prevented the moving entities ‘short circuiting’ the network and getting
stuck in dead ends they could not return from. To avoid such situations, we connected nodes with degree
k < 2 to 2 − k random nodes.

2.5.2 Cored networks. Design of the Girvan–Newman networks is such that the communities are
separated from one another with relatively clear boundaries so that every part of the network represents
a different community and all parts of the network belong to a community. We find an even division of
the entire network into a set of similarly structured communities to be somewhat artificial. Many real-
world networks tend to have communities of different sizes overlap and even regions that do not belong
to any clear community. We therefore created another set of artificial networks designated as cored
networks (Fig. 3(b)). Cored networks are random networks with embedded densely connected regions
(cores) of different sizes. Thus, instead of being a collection of communities as in Girvan-Newman
networks, cored networks are composed of a complex hierarchical structure of smaller communities
nested within larger ones. Construction of the cored networks starts with creation of the cores. The n
core nodes are randomly interconnected with an average core connectivity of kcore. The core is next
embedded in the network by adding links between the core nodes and the background nodes until the
average inter-connectivity (kint) is reached. More specifically, the core node i, (i = 1, . . . , n) connects to
a background node j, (j = 1, . . . , N − n) with a probability of

pout = kint

N − n
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The remaining links connect background nodes so as to achieve the average overall network connectiv-
ity of k. A pair of background (non-core) nodes is thus connected with a probability of

pnon−core = Nk − nkcore − 2nkint

(N − n)(N − n − 1)

We used cored networks containing N = 100 nodes and composed of a core of n = 20 nodes. They had
an average connectivity of k = 10 and kint ranging from 1 to 5, for which a core node had as many
inter-connections as intra-connections, a scenario equivalent to the Girvan–Newman networks above
but with a more complex, hierarchical and less uniform division of communities.

2.5.3 Non-homogeneous community benchmark networks. To test our algorithm on larger non-
uniform networks we used the more novel benchmark networks described in [17]. The artificial network
can control the non-homogeneity in node connectivity, community size and community quality distribu-
tions which more reliably model the range of structures found in real-world networks. We created these
network such that connectivity and community size distributions were heterogeneous obeying power
laws with degree exponents γ and β, respectively [17]. To model larger networks of sizes relevant in
their structure and size to real-world biological and social networks, we generated random networks
with the number of nodes N = 5000, mean degree k = 20 and power law degree and cluster size distri-
butions of γ = 2.5 and β = 1.5. Themixing parameter μ received the values μ = 0.1, 0.2, 0.3, 0.4 and
0.5 to control the level of ambiguity of the created communities in the network by setting the fraction
of node’s out-links pointing outside of its community.

We tested the speed of our algorithm by analysing its performance on an ensemble of larger net-
works. For this, we created 10 networks for each value of N = 1 × 104, 2 × 104, . . ., 10 × 104 with
average degree k = 20, mixing parameter μ = 0.2 and community sizes between 0.004N and 0.04N for
each N .

2.5.4 Protein–protein interaction network of C. elegans. To test the capability of our approach to
pinpoint community-like structures in real-world networks we studied the protein interaction network of
C. elegans [22]. Protein interaction networks represent interaction data of proteins, where each protein
is represented by a node and links represent interaction partners of that protein [22]. For our analysis,
we extracted the giant component of the protein interaction network having 197 proteins and 464 inter-
actions. As in the other cases we prevent entities from getting stuck by eliminating the nodes with fewer
than two connections. Node removal does not impact the overall structural organization of the network
because the nodes with a degree of 1 are peripheral. Note that this procedure is equivalent to extraction
of 2-core with k-core decomposition [33] as the node removal process is iterative and continues until
no nodes with a degree lower than 2 remains (removal of all nodes with a degree of 1 may lead to
emergence of new nodes with that qualify for removal).

After removal of nodes with only a single edge the protein interaction network had 128 nodes and
382 links with an average connectivity of k = 5.97 (as opposed to 4.71 before the elimination of dead
end nodes).

2.6 MBRW simulation parameters

In MBRW an entity moves on the networks preferentially. The entity’s destination from a node is
determined by the last s steps of its movement (a memory of size s) and the ‘strength’ of its tendency
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(α value) to prefer a destination/s which has already been visited within these last s steps over the other
potential destinations. We experimented with a range of simulation parameters (s and α) and observed
that the results were not overly sensitive to the choice of their values so long as they were s � 5 and
α � 1000. Considering a parameter space of s = [4, 5, 10, 15, 25], α = [10, 100, 1000, 5000, 10 000] and
Cn = [1, 2, . . . , 10] we found (data not shown) that when a larger memory size (s � 10) was employed,
the memorized long paths mostly included a subsection of repeating small paths of size 3–4 steps. Thus,
the capacity of longer memory effectively reduced to the capacity of a much smaller one with greater
cost in simulation step number needed for the entity to visit all the nodes at least. We also observed that
although any value of α > 1 improved, in general, the results of otherwise pure random walk, α = 1000
was sufficient for most of the networks to obtain the optimal results. Based on this finding, in this study
we simulated the movement of the entity with a memory of s = 5 (and without memory, s = 0 for com-
parison). When s = 5 we used α = 1000 implying that a memorized direction will be taken 1000 times
more probably than an un-memorized one (Fig. 1).

For every condition of artificial networks, we created 10 networks and ran 10 simulations of entity
movement for each of these networks. These included: (i) 8 Girvan–Newman networks with kint = 1 to
8, (ii) 5 cored networks with kcore = 10 and kint = 1 to 5, (iii) 5 benchmark networks [17] with N = 5000
and μ = 0.1 to 0.5 and (iv) 10 benchmark networks [17] with μ = 0.2 and N ranging from 104 to 105 at
10k node steps. Lastly we ran 25 simulations of movement on the C. elegans protein interaction network
system. The circulation number was not constant but dependent on the kint value of the networks, i.e.
for bigger kint-valued networks the results (mean community qualities or module densities) converged
to their steady state values in larger circulation numbers. In other words, when networks were more
interconnected or the communities less delineated it took the entity longer to identify them through
movement.

Similar to the k-means analysis [31], the largest coefficient gap analysis of the leading eigenvector
of the MBRW-weighted transition matrix requires the partition number to be defined a priori (see the
Section 2.4.2). In the case of the C. elegans protein interaction network, we needed to make an estima-
tion for the community number since it is an un-designed (real-world) network with unknown number of
communities. To do so we employed largest difference analysis of the eigenvector coefficients in which
we used the module density to assess the comparative community qualities of the candidate community
sets. We clustered the leading eigenvector by cutting its coefficient sequence at Mn − 1 positions where
the consecutive eigenvector coefficient pair has the largest linear distance. We applied this procedure
for different partition numbers from Mn = 1 to 30. To eliminate the dependence of the results on the
stochastic nature of the underlying algorithm, we applied this analysis to each of the 25 instances of
a simulated network with given partition number and used the mean module density for each partition
number.

2.7 Performance analysis of MBRW

We assess the algorithmic performance of MBRW empirically, by running it on a set of large net-
works. The benchmark networks we used were generated as defined in [17] with N = 1 × 104,
2 × 104, . . . , 10 × 104 nodes. We executed 10 simulations with a circulation number of 1 on 10 instances
for each of the network sizes. We measured the elapsed (physical) times for each circulation and pre-
sented them with the simulation step number (the size of the movement sequence) with respect to the
network size. The computations were performed on a workstation equipped with a single Intel (R) Xeon
CPU W3680 3.33 GHz. We employed a linear regression model to construct a relationship between the
elapsed physical time per network node and the network size.
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Table 1 Percentage of correctly classified nodes for the Girvan–Newman networks with different
inter-community link numbers per node (kint). kcom, Cn (defined only for MBRW) and SD are community
average connectivity, circulation number and standard deviation, respectively. The table compares per-
formance of the memory-biased random walker (MBRW), topologically biased random walk (TBRW)
and Girvan–Newman, algorithms

Correctly classified nodes in % (SD)

kint kcom Cn MBRW TBRW Girvan–Newman

1 15 1 100 (0) 97.97 (0.64) 100 (0)
2 14 1 100 (0) 96.25 (0.51) 100 (0)
3 13 2 99.7 (0.66) 91.72 (0.75) 99.9 (0.003)
4 12 2 98.4 (0.74) 89.53 (11.7) 97.3 (0.079)
5 11 3 96.6 (1.66) 85.39 (6.2) 87.3 (0.16)
6 10 3 93.6 (2.38) 75.24 (9.1) 50.6 (0.28)
7 9 4 72.0 (1.37) 66.17 (7.9) 31.88 (0.1)
8 8 4 61.1 (5.24) 58.28 (6.6) 27.3 (0.04)

3. Results

3.1 Detection of community structure via analysis of memory-biased movement patterns

3.1.1 Comparative performances for the Girvan–Newman networks. As we have previously shown,
MBRW leads to preferred motion in regions of the network that were more intra than inter connected
[34]. Here, we show how the tendency of the MBRW to inhabit community-like structures can be used
to detect communities in different networks. Searching Girvan–Newman networks for communities we
found that MBRW algorithm provides results that are very similar to those of the Girvan–Newman’s
divisive algorithm. MBRW correctly classifies over 98% of the nodes when kint � 4, where kint is the
inter-community link number per node. For larger values of kint (kint � 5), MBRW outperforms the
Girvan–Newman method (Table 1). This finding is quite important since communities in real-world
networks are often highly ambiguous making the case of high kint most common [35]. When compared
with spectral clustering, application of the MBRW method improves community detection, a fraction of
correctly classified nodes, for all values of kint (note the standard deviation column in Table 1).

3.1.2 Performance for the cored networks. We next tested the relative ability of the MBRW
algorithm to detect the cores in the cored networks by comparing its performance to the standard
Girvan–Newman and TBRW methods as before. Once again the MBRW method outperformed exist-
ing methods by large margin. In fact, arguably due to the cored networks’ uneven structure, MBRW
outpaces all other methods for kint > 1 (Table 2).

3.1.3 MBRW performance on the realistic benchmark networks (17). We next compared the two
community detection algorithms, MBRW (run for up to Cn = 4) and Infomap, on a set of benchmark
networks [17] with different mixing parameters μ (Table 3). In all of these networks, the number of com-
munities embedded by design in the 10 instances of the benchmark networks Mn1 was between with
an average of 80.4 ± 13.8 (see the community number band of the designed communities in Fig. 4).
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Table 2 Correctly classified nodes for the cored networks with different inter-community link num-
bers per node (kint). kcom, Cn (defined only for MBRW) and SD are community average connectivity,
circulation number and standard deviation, respectively

Correctly classified nodes in % (SD)

kint kcom Cn MBRW TBRW Girvan–Newman

1 9 1 100 (0) 100 (0) 100 (0)
2 8 1 97.71 (0.36) 96.1 (0.85) 91.68 (2.4)
3 7 2 94.72 (0.35) 93.84 (0.32) 66.95 (3.58)
4 6 2 74.04 (2.12) 55.78 (2.9) 38.03 (2.89)
5 5 3 41.52 (1.39) 33.32 (1.67) 21.43 (0.19)

Table 3 Comparison of the mean module densities with their associated community numbers obtained
by the MBRW (Mn1, Mn2 and Mn3) and Infomap (Mn2) algorithms on the benchmark networks [17] of
N = 5000 with different mixing rates (μ). Mean module densities of the designed communities (the By
Design column) are listed in the table for reference. Note that these densities are the mean module
densities of the exact communities as placed in the networks by design. SDs for the module densities
and community numbers were in the range of 0.004–0.025 and 3.69–13.32, respectively

Mean module density

MBRW Infomap By Design

μ (Mn1) (Mn2) (Mn3) (Mn2) (Mn1)

0.1 0.416 0.416 0.439 0.416 0.420
0.2 0.355 0.343 0.387 0.338 0.357
0.3 0.330 0.304 0.358 0.297 0.330
0.4 0.267 0.226 0.337 0.212 0.264
0.5 0.233 0.199 0.295 0.180 0.228

Infomap identifies the optimal number of communities, Mn2 and partitions the network only for this
value. Interestingly, Mn2 wasn’t only consistently larger than the corresponding Mn1, but it grew larger
with the rise in μ. Using MBRW we could easily estimate communities for different community num-
bers and show the mean module density for each Mn. We identified an optimum MBRW community
number Mn3 by applying MBRW across a wide range of community numbers Mn1 and Mn2 for the
networks with a range of mixing parameters μ.

The MBRW optimal community number Mn3 was consistently smaller than the related Mn1, growing
smaller with the rise in μ (Fig. 4). At all values of the mixing parameter μ, the communities identified by
MBRW outperformed Infomap in terms of module density when either Mn1 or Mn2 community numbers
were chosen (Table 3 and Figs 5–7). Furthermore, the module densities for community numbers Mn3

were higher still (Table 3 and Figs 8 and 9).
Going beyond the mean module densities, we compared the differences in the module densities

of the individual communities at Mn1 and Mn2 community numbers, as identified by MBRW to their
module densities of communities as designed or obtained by Infomap, respectively.

To compare, we ranked the individual community module densities of both community sets (either
MBRW vs. Designed or MBRW vs. Infomap set) by their module density and then subtracted them from
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Fig. 4. Comparison of the community numbers obtained by the MBRW and Infomap algorithms on the benchmark networks [17]
of N = 5000 with different mixing rates (μ). The band of the designed number of communities (dashed area in the figure) is
given for reference. Community numbers used for producing this figure are the 10-run average community number for the actual
network (Mn1), and the optimums obtained by Infomap (Mn2 circles in blue) and MBRW (Mn3 squares in red).

(a) (b)

Fig. 5. Distribution of the difference between ranked module densities at different mixing rates for: (a) Mn1 communities identified
by MBRW and by design, and (b) Mn2 communities identified by MBRW and by Infomap. Lines in boxes show median difference,
boxes represent the 25th and 75th percentiles while the region between whiskers represent 99.3% of the data for each box-plot.

each other matching on their rank (i.e. the module densities in the same rank of the two different sets
are subtracted). Most of if not all of the communities identified by MBRW have higher module density
(the values are positive). This trend becomes even more pronounced as μ goes up (Figs. 5–7).
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Fig. 6. Differences between Mn1 ranked module densities of the MBRW and designed communities for the 10 networks simulated
(marked by green dots) at few levels of mixing (μ = 0.1 to 0.5). The markers ‘x’ with whiskers represent the median with first
and third quartiles for each module rank across simulations.

We compare the community quality at the individual community level by ranking the Mn1 and the
Mn2 communities identified by MBRW by their module density and comparing them to the equiva-
lent Mn1 and Mn2 communities identified by design [17] or by Infomap, respectively (Figs 6 and 7).
The medians indicated by the ‘x’ marker, suggest that MBRW generates better community structure
compared to other algorithms, especially at high mixing levels. For μ = 0.1, 0.2, 0.3, 0.4 and 0.5, the
MBRW communities achieved module densities higher than the module densities of the originating
Mn1 designed communities in 44, 52, 58, 61 and 66% of the compared communities, respectively, for
the mixing rates (Fig. 6). The improvement is even more pronounced when compared with Infomap:
MBRW identified Mn2 communities in which 61, 64, 72, 76 and 82% of the communities had higher
module density compared with Infomap for, respectively, μ = 0.1, 0.2, 0.3, 0.4 and 0.5 (Fig. 7). In gen-
eral, it appears that MBRW identifies communities with higher module density at the expense of a
uniform modular structure. Thus for instance, at the optimal community number of MBRW Mn3, the
vast majority of the communities have a module density between 5 and 15 times higher than the overall
network module density while 2–3 have essentially no community structure and a module density that
matches it with a value of ∼ 0.004 (Fig. 8). Similarly, when the network is partitioned into Mn3 com-
munities by MBRW the module densities between the 1st and 3rd quartile follow a much smaller range
of module densities which are all quite high but the overall range of module densities remains much the
same (Fig. 9).
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Fig. 7. Differences between Mn2 ranked module densities of the MBRW and Infomap communities for the 10 networks simulated
(marked by green dots) at several levels of mixing (μ = 0.1 to 0.5). The markers ‘x’ with whiskers represent the median with first
and third quartiles for each module rank across simulations.

3.1.4 Community analysis of the C. elegans protein interaction network. Finally, we tested the
MBRW method on the C. elegans protein interaction network. In contrast with the artificial networks
where the number of communities is known by design, their number had to be inferred empirically in
the real-world networks. As explained in the methods section above, we determined the number of com-
munities in the network by analysing the largest gaps of the consecutive coefficient pairs in the leading
eigenvector. The number of candidate communities (Mn) is inferred from the average module density
of its corresponding community set and reaches its global maximum around Mn = 15 (Fig. 10).

Figure 10 suggests that MBRW network partitioning is optimal for values of around Mn = 15,
whereas the Infomap optimal community number for the same network is Mn = 17. We compared the
mean module density of the communities generated by all algorithms—MBRW, Girvan–Newman and
Infomap, for Mn = 10 to 17 (Table 4).

MBRW again outperforms the traditional Girvan–Newman algorithm for all the tested community
numbers from 10 to 17 and Infomap for its optimal Mn = 17 (module density = 0.504, Table 4).

3.2 MBRW runtime performance

Beyond the ability to infer a realistic community structure, practical use of the network partitioning
algorithm is defined by its computational complexity. We test the MBRW efficiency and assess its
computational complexity by measuring how the network size effects the mean simulation step numbers
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Fig. 8. Ranked module density distributions at μ = 0.3 of the individual communities: by design (blue dots representing Mn1 = 93
communities) by Infomap (red squares representing Mn2 = 102 communities) or by MBRW (green, yellow and pink diamonds
representing Mn1, Mn2 and Mn3 = 67 communities respectively).

Fig. 9. N = 5000, μ = 0.3, 95% confidence interval box-plot of module density distribution identified by MBRW for a range
of community numbers. Marked are the optimal results for MBRW (Mn3 = 67) and Infomap (Mn2 = 102 in red) and for the
benchmark networks community size by design (Mn1 = 93 in green).

(the sizes of the movement sequences) and the physical times required by the MBRW simulations to
converge (Table 5). To be comparable, these measurements are performed for a circulation number of
1 (Cn = 1), which we consider to be the basic computational unit. Increase in Cn in the expectation of
the MBRW conversion will not alter the functional dependence of the algorithm performance on the
network size, making it particularly convenient unit of measurement. Note that MBRW performance
scales linearly with parallelization as one can execute numerous instances of the stochastic algorithm
independently (e.g. several moving instances traversing the same network, each in separate computation
thread or even on a different machine).
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Fig. 10. Average of the mean module density in the C. elegans protein interaction network over 25 MBRW simulations with the
leading eigenvector coefficient gap analysis for a range of candidate community numbers Mn. Error bars represent SD.

Table 4 Mean module density of the communities identified in the C. ele-
gans protein interaction network with different methods for different commu-
nity numbers (Mn). Note that Infomap generates partition for an Infomap-
optimal partition number only, which for this network is Mn = 17

Mean module density

Mn MBRW Girvan–Newman Infomap

10 0.483 0.401 –
11 0.492 0.416 –
12 0.502 0.418 –
13 0.503 0.388 –
14 0.517 0.363 –
15 0.525 0.341 –
16 0.512 0.323 –
17 0.504 0.307 0.465

Not surprisingly, the simulation step number per node is independent of the network size (Table 5).
On the other hand, the computation time per node grows linearly with the size of the network (Fig. 11)
remaining reasonable even for fairly large networks (∼ 7 min for analysis of a 100,000 node network –
Table 5).

The identified relationship between physical time per node (computed as computation time/N) and
the network size N (Fig. 11) implies that the computational time is parabolic to N , suggesting com-
putation complexity of O(N2). Although we have obtained a general linear relationship between the
network size and physical time per node, the parameters of the line equation to be derived will depend
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Table 5 Mean step numbers (per node) and physical times that take a
memory-biased random walker to visit all the network nodes at least once
as a function of the network size (N). MBRW was executed with a cir-
culation number of Cn = 1 on a set of benchmark networks described in
Section 2 [17]

N(×104) Step number (per node) Physical time (s)

1 20.96 (3.99) 4.7 (1.06)
2 19.33 (2.18) 15.7 (2.06)
3 20.66 (4.38) 39.1 (6.29)
4 19.14 (2.61) 65.7 (8.96)
5 20.39 (4.12) 106 (21.78)
6 20.79 (3.73) 157.8 (28.35)
7 21.4 (2.52) 222.5 (26.3)
8 20.27 (3.69) 308.8 (48.13)
9 21.2 (4.33) 356.4 (72.94)

10 20.57 (3.27) 439.9 (66.76)

Fig. 11. Physical time per node with respect to the network size (circles, lineage fit represented by dashed line).

on the algorithm implementation details, topological properties of the networks and the workstation
configuration.

4. Discussion and conclusion

In the previous work, we showed that introduction of memory bias into otherwise random walk on
network causes repetitive movement patterns that reflect structures that are more intra-connected than
inter-connected with the rest of the network [34]. In this work we use a memory biased motion algorithm
to develop a hybrid bottom-up spectral methodology for community detection. Memory-induced biases
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in movement of an entity on network result in construction of an empirically weighted transition matrix
which we subject to spectral analysis to detect the network community structure. We test our approach
on several artificial (Girvan–Newman (3), cored and benchmark [17]) as well as a real-world (C. ele-
gans protein interaction [22]) networks. In the Girvan–Newman network, the MBRW produced similar
or better results (especially in poorly defined communities, with kint > 5) than the Girvan–Newman’s
divisive algorithm or spectral clustering of the network topology (TBRW) [4,6]. We further define cored
networks—a new class of random network models exhibiting tuneable community structure, which is
less pronounced than in the classical models. Cored networks are convenient for testing performance of
community detection algorithms on networks with weakly pronounced, ambiguous community structure
that resembles real-world situations. Networks generated by the cored networks model embed densely
interconnected structure into a larger network. This is in contrast to Girvan-Newman type networks
in which uniform communities are separated from one another with relatively clear boundaries. Using
spectral analysis applied to transition matrix, we define module density that is instrumental in assess-
ing the quality of the detected community structure. In terms of module density, MBRW outperformed
the Girvan–Newman and spectral clustering methods and achieved efficient partitioning for the cored
networks even with highly ambiguous cores.

In addition to Girvan–Newman and spectral analysis methods, we compared performance of MBRW
to that of the Infomap algorithm which shares the underlying operation principle with the Louvain’s
method. Both Infomap and MBRW are flow-based and both rely on the analysis of a random walker’s
movement in a given network. The main difference between Infomap and related methods and MBRW
is that while the former use a theoretical stationary distribution of node visits of the walker, MBRW
effectively traces the actual movement of a walker and constructs the communities out of this move-
ment. Furthermore, MBRW employs memory to direct the otherwise random network traversal. More
specifically, the memory effects movement in two ways: (1) the walker does not retrace its immediate
last step and (2) it remembers its last s steps and tends to follow the route decisions as it did within those
steps. Infomap employs multiple-order Markov processes as well (in which non-backtracking rule does
not apply). But Infomap and MBRW differ in how they define and implement memory. In Infomap, the
memory is path-dependent so that the walker’s next move depends on where it comes from. In con-
trast, the MBRW memory is not necessarily path-dependent: the next step depends on the frequency
of recent visits rather than the exact sequence of steps and the current location. The MBRW walker is
attracted toward the nodes that have already been visited. We found that the MBRW emphasis on the
analysis of a transient state is superior to the Infomap emphasis on the analysis of a stationary state
in achieving efficient identification of communities in the benchmark networks of [17] (Table 3 and
Figs. 5–9).

Furthermore, across the whole range of mixing parameter (μ) when we use MBRW for the different
optimal partition numbers as described by the design of the benchmark network, by Infomap or by
MBRW (Mn1, Mn2 and Mn3, respectively) MBRW performance is either equivalent or superior to other
algorithms (Table 3, Figs. 5 and 8). In all cases, Infomap tends to divide networks into higher number
of (smaller) communities and suggests more communities than were put in by design, while MBRW
find equivalent number of communities at lower mixing (μ = 0.1 − 0.3) and fewer when mixing rises
(Fig. 4).

To fully compare MBRW and Infomap, we heuristically derived and analysed the optimum com-
munity numbers obtained by MBRW that give the highest mean module densities (Table 3, Figs. 8
and 9). MBRW identifies sets of communities whose mean module densities are ∼ 5–30% higher than
the mean module densities of the designed communities for the networks with the clearest (μ = 0.1)

and most ambiguous (μ = 0.5) communities, respectively (Table 3). Here, it may seem contradictory
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for MBRW uncovering community sets whose mean module density is superior (if not equal) than
the sets put in the networks by design especially for the networks with ambiguous community profile
(i.e. higher μ). Considering the creation procedure of the benchmark networks from [17] in which the
intra/inter-links are added to the networks at random, it is always possible to have a configuration where
any two groups of nodes (assumingly candidate communities) will be relatively more inter-connected
than intra-connected for higher μ. Such a case would justify the MBRW algorithm’s merging of the two
groups. In fact, this was exactly how MBRW partitioned the benchmark networks (Table 3). It tended
to merge the loose communities with dense inter-connections obtaining fewer, yet better-defined parti-
tioning (Figs. 4, 8 and 9). For example, although there were on average 80.4 communities put by design
in the networks with μ = 0.5 and mean module density of 0.228, MBRW identified fewer communi-
ties (62.3 on average) but with a higher mean module density (0.295) (Table 3). Possibly, the higher
module density for the Mn3 MBRW optimal communities is achieved by removing some parts of the
network from having any community structure at all. For instance, we observe that 61 of the 67 optimal
communities identified by MBRW have module density > 0.2 while the two lowest ranking MBRW
communities have a module density of ∼ 0.004, which is slightly lower than the overall module density
of the containing network (0.0043) (Fig. 9).

MBRW also outperforms Infomap in the real-world C. elegans protein interaction network, yield-
ing significantly higher nodular density for 15 communities vs. 17 for Infomap (Table 4). Despite the
absence of consensus on the definition of a network community, many approaches share the notion that
communities are defined as relational concepts [26]. We adopted a similar approach in this work and
compared the mean module density of the local structures to the module density for the entire network.
This measure defines the community status of the set of local structures. Thus, 15 candidate communi-
ties yielding a mean module density of ∼ 11 times higher than those of the entire network represent a
very reasonable segmentation (Fig. 10 and Table 4).

Contemporary researchers routinely use network abstraction to represent large biological and social
systems. These systems’ structural modules tend to have some functional autonomy, while interacting
with other system’s elements as they remain embedded in the network at different levels. Understanding
the system organization can therefore be seen as network partitioning problem. In spite of the need, the
currently available algorithms are insufficient while developing algorithms that efficiently reveal the
community structure of real networks is still highly challenging. We believe that the algorithm presented
here can be seen as an early example of a dynamical bottom-up approach to explore the community-like
structures utilizing a process that may, in fact, resemble processes occurring on the network. Indeed,
beyond being a network analysis tool, the MBRW presented here could owe its performance to the
fact that it catches some of the behaviours in real world biological and social information networks.
Entities traversing such systems rarely have access to maps of the whole network and substitute such
global knowledge by gradual exploration. This idea is further supported by the fact that our method
significantly outperforms alternative approaches, particularly in networks with ambiguous communities
and in the cases when network communities are not uniform but form ‘cores’ embedded in the network.
We believe that the MBRW algorithm represents a more realistic and applicable approach to partitioning
of the real world networks.
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