
PROCEEDINGS Open Access

VDJML: a file format with tools for
capturing the results of inferring immune
receptor rearrangements
Inimary T. Toby1, Mikhail K. Levin2, Edward A. Salinas3, Scott Christley1, Sanchita Bhattacharya4, Felix Breden5,
Adam Buntzman6, Brian Corrie7, John Fonner8, Namita T. Gupta9, Uri Hershberg10, Nishanth Marthandan11,
Aaron Rosenfeld12, William Rounds13, Florian Rubelt14, Walter Scarborough8, Jamie K. Scott15,
Mohamed Uduman16, Jason A. Vander Heiden9, Richard H. Scheuermann17,18,19, Nancy Monson13,
Steven H. Kleinstein9,16,20 and Lindsay G. Cowell1*

From 13th Annual MCBIOS conference
Memphis, TN, USA. 3-5 May 2016

Abstract

Background: The genes that produce antibodies and the immune receptors expressed on lymphocytes are not
germline encoded; rather, they are somatically generated in each developing lymphocyte by a process called V(D)J
recombination, which assembles specific, independent gene segments into mature composite genes. The full set of
composite genes in an individual at a single point in time is referred to as the immune repertoire. V(D)J recombination
is the distinguishing feature of adaptive immunity and enables effective immune responses against an essentially
infinite array of antigens. Characterization of immune repertoires is critical in both basic research and clinical contexts.
Recent technological advances in repertoire profiling via high-throughput sequencing have resulted in an explosion of
research activity in the field. This has been accompanied by a proliferation of software tools for analysis of repertoire
sequencing data. Despite the widespread use of immune repertoire profiling and analysis software, there is currently
no standardized format for output files from V(D)J analysis. Researchers utilize software such as IgBLAST and IMGT/High
V-QUEST to perform V(D)J analysis and infer the structure of germline rearrangements. However, each of these software
tools produces results in a different file format, and can annotate the same result using different labels. These
differences make it challenging for users to perform additional downstream analyses.

Results: To help address this problem, we propose a standardized file format for representing V(D)J analysis results.
The proposed format, VDJML, provides a common standardized format for different V(D)J analysis applications to
facilitate downstream processing of the results in an application-agnostic manner. The VDJML file format specification
is accompanied by a support library, written in C++ and Python, for reading and writing the VDJML file format.

Conclusions: The VDJML suite will allow users to streamline their V(D)J analysis and facilitate the sharing of scientific
knowledge within the community. The VDJML suite and documentation are available from https://vdjserver.org/vdjml/.
We welcome participation from the community in developing the file format standard, as well as code contributions.

Keywords: Repertoire profiling, Immune repertoire, Antigen receptor repertoire, Data standards, Data sharing, Python,
C++, XML

* Correspondence: lindsay.cowell@utsouthwestern.edu
1Department of Clinical Sciences, UT Southwestern Medical Center, 5323
Harry Hines Boulevard, Dallas, TX 75390-9066, USA
Full list of author information is available at the end of the article

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

The Author(s) BMC Bioinformatics 2016, 17(Suppl 13):333
DOI 10.1186/s12859-016-1214-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-016-1214-3&domain=pdf
https://vdjserver.org/vdjml/
mailto:lindsay.cowell@utsouthwestern.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
The genes that encode antibodies (Ab) and the immune
receptors expressed on B and T lymphocytes are not
germline encoded; rather, they are somatically generated
in each developing lymphocyte by a process called V(D)J
recombination, which assembles specific, independent
germline gene segments into mature, composite genes
[1]. Seven types of genes are assembled by V(D)J recom-
bination, and, for each one, there are two or three sets
of gene segments: Variable (V) and Joining (J) gene seg-
ments are present in all seven, and Diversity (D) gene
segments are present in three. During V(D)J recombin-
ation, one gene segment of each type is selected, essen-
tially at random, and the selected segments are joined to
form a rearranged gene [2]. A diverse repertoire of genes
is created as a result of the varied combinations of gene
segments. In addition to this combinatorial diversity,
there is junctional diversity as a result of imprecise join-
ing: the sequence at the junction of two joined gene seg-
ments is unique due to enzymatic processes that act on
the gene segment ends (e.g., hairpin opening and exonu-
cleolytic removal) and add non-templated nucleotides
into the junctions [2]. In B lymphocytes, the rearranged
genes are further diversified through gene conversion
(e.g., in chickens and rabbits) [3] or somatic hypermuta-
tion (e.g., in mice and humans) [4]. As a result of these
processes, each individual has millions of unique Ab and
immune receptor genes [5, 6].
V(D)J recombination is the distinguishing feature of

adaptive immunity and, through the creation of a diverse
immune receptor repertoire, enables the mounting of an
effective immune response against an essentially infinite
array of antigens, such as those derived from pathogens
or tumors. It also has the potential to generate
autoimmune responses. Thus, the characterization of
adaptive immune receptor repertoires is critical in both
basic research and clinical contexts, as well as in the de-
velopment of pharmaceuticals. Recent application of
high-throughput sequencing allows description of the
immune response in exquisite detail and has resulted in
an explosion of research activity in the field [7–10]. This
has been accompanied by a proliferation of software
tools for analysis of repertoire sequencing data.
Repertoire sequencing typically involves targeted poly-

merase chain reaction (PCR) or 5′ rapid amplification of
cDNA ends (5′ RACE) to amplify rearranged gene se-
quences followed by sequencing of the PCR product.
The initial steps in analysis of the resulting sequencing
data are generally the same, regardless of the biological
or clinical question being addressed [11]. The first step
is preprocessing to prepare reads for analysis. Examples
of preprocessing activities include demultiplexing, qual-
ity filtering, and error correction. The second common
analysis step is inference of rearranged gene sequences

via alignment of sequences to reference databases of
germline gene segments. The third step is annotation of
rearranged gene sequences according to things such as
gene segments utilized, location of complementarity de-
termining regions (CDRs), non-templated nucleotides,
and, in the case of B lymphocyte-derived sequences, base
substitutions, insertions, and deletions resulting from
somatic hypermutation. The fourth common step is rep-
ertoire characterization, including clone enumeration,
determination of repertoire-level distributions (e.g., gene
segment usage, CDR3 length), and quantification of di-
versity and clonality. A large number of software pack-
ages have been developed for these analyses, particularly
for the second and third steps. At the time of this writ-
ing, there are no fewer than 24 packages, each perform-
ing at least one of steps 2–4, and there will certainly be
many more released in the future [12–35].
Despite the importance and widespread application of

immune repertoire profiling via high-throughput se-
quencing, there are currently no community standards
for data recording and exchange. The inputs and outputs
for preprocessing software packages are reasonably stan-
dardized, as these mainly read and write FASTA/QUAL
or FASTQ files. There are, however, differences in the
way sequence-level metadata (such as primer matches
and UID sequences) are stored, with one mechanism be-
ing encoding this information as entity-value pairs dir-
ectly in the FASTQ format [24]. Software packages for
conducting germline alignment all utilize FASTA files,
but they write different output formats, and, for all sub-
sequent analysis steps, there are no input/output stan-
dards. The most widely used germline alignment
packages, IgBLAST and IMGT/High V-QUEST, write
distinct mixed content text files that intersperse se-
quence alignments and tables with data embedded in
free text. This creates significant problems for both soft-
ware developers and users. Software developers must
write parsers for multiple different input formats or limit
their software to consuming the output of only a single
alignment package. Users must reformat data as it
moves through an analysis pipeline, which is a time-
consuming and error-prone process. This problem is ex-
acerbated by the frequent desire to utilize multiple pack-
ages for a single analysis task for comparative purposes.
Furthermore, reformatting is not always possible as the
formats differ not just in how the data are represented
but also in the content.
To address this problem, we have developed

VDJML, an XML-based file format for representing
the alignments of rearranged gene sequences to germ-
line gene segments and the accompanying set of an-
notations. VDJML can accommodate rearrangements
from both B and T lymphocytes. VDJML is a com-
mon, open standard designed to provide both

The Author(s) BMC Bioinformatics 2016, 17(Suppl 13):333 Page 6 of 186



syntactic and semantic interoperability between soft-
ware packages. The VDJML suite includes a schema
for the VDJML format and libVDJML, a C++ library for
generation and parsing of VDJML files, with an accom-
panying package of Python bindings for the library.
While our primary motivation was to provide a

common open standard for software development,
VDJML has additional benefits. It can serve as the
basis for integrative analysis of results from different
studies, and it can meet the widely recognized need
for data sharing to improve reproducibility and scien-
tific rigor [8, 36].

Implementation
Design priorities
VDJML development was initiated as part of the VDJSer-
ver project (https://www.vdjserver.org). It is being devel-
oped as an open, community standard. Its data structure
was established during regular calls among the authors,
some of whom are computational biologists developing
repertoire analysis software, and some of whom are exper-
imentalists and users of this software. The team includes
developers of VDJServer and its software packages (e.g.
VDJPipe) (https://bitbucket.org/account/user/vdjserver/
projects/VDJS), developers of iReceptor, and developers of
the Immcantation framework (http://immcantation.-
readthedocs.io) [23, 24]. Documentation for VDJML is
available from https://vdjserver.org/vdjml/. Source code
for the tools is available from the VDJML Bitbucket re-
pository at https://bitbucket.org/vdjserver/vdjml.
We chose XML, the eXtensible Markup Language

[37], because it readily accommodates key features of
our data type, including:

� The need to add or eliminate data fields over time and
to version future extensions of the schema,

� The need for standard VDJML data types along with
custom, user-defined data types, and

� Variable cardinality relationships between rearranged
gene sequences and their annotations (e.g., a single
sequence may have alternative alignments, each with
multiple base substitutions).

Additional reasons for selecting XML include the port-
ability of XML documents, existing extensive support for
standard definitions, parsing, generation, and versioning,
and its widespread acceptance as a standard [38].
We had the following additional design priorities:

� Support for including results from multiple software
packages, multiple germline databases, and multiple
systems for annotating codon positions in rearranged
gene sequences;

� Normalization to minimize data duplication;

� Read/write streamability in that, during reading or
writing VDJML files, only the information from a
single record needs to be present in memory.

Schema overview
Currently, version 1.0 of VDJML has been finalized with
a relatively narrow scope that will be extended over
time. The current scope does, however, include sufficient
information to recreate an alignment. Elements defined
by the schema (Fig. 1) belong to the namespace http://
vdjserver.org/vdjml/xsd/1/ and are prefixed vdj:. The top
element of the schema is vdj:vdjml, which contains the
required version attribute.
A VDJML file consists of two parts enclosed in the

vdj:meta and vdj:read_results elements (Fig. 2). The
schema allows user-defined elements and attributes to
appear under vdj:meta and vdj:read_results, but these
should have namespaces other than vdj.
The vdj:meta element contains general information that

may be shared across analysis results (Fig. 2). Its child ele-
ments include vdj:generator, vdj:aligner, and vdj:germli-
ne_db. The vdj:generator element describes the software
that wrote the VDJML file using the required name, ver-
sion, and time_gmt attributes. The value for the time_gmt
attribute is the date and time the file was written in
Greenwich Mean Time (GMT). The vdj:aligner element
contains information about a software package used to
align sequences to a database of germline gene segments,
a program that generated all or some of the results in the
VDJML document. This element has the required attri-
butes aligner_id and name. The value for aligner_id is a
unique identifier that is referenced within child elements
of the vdj:read_results element described below. It enables
inclusion of results from multiple different aligners for a
single sequence in a single VDJML file. vdj:aligner has one
child element, vdj:parameters, which can be used to cap-
ture information needed to reproduce the run of the align-
ment software. Figure 2 shows a VDJML file generated on
VDJServer using a local installation of IgBLAST. On
VDJServer, the parameter element captures the command
passed to IgBLAST. The vdj:germline_db element stores
information about a germline database used for analysis
with the required attributes version, species, name, and
gl_db_id. As with aligner_id, the value for gl_db_id is a
unique identifier that is utilized with child elements of
vdj:read_results to accommodate alignments for a single
sequence against multiple germline databases.

Representation of alignments
Alignment results (alignments plus their annotations)
are stored inside the vdj:read_results element as a series
of vdj:read elements. Each vdj:read element corresponds
to one sequence. The required read_id attribute holds a
unique identifier for the sequence, which is the

The Author(s) BMC Bioinformatics 2016, 17(Suppl 13):333 Page 7 of 186

https://www.vdjserver.org/
https://bitbucket.org/account/user/vdjserver/projects/VDJS
https://bitbucket.org/account/user/vdjserver/projects/VDJS
http://immcantation.readthedocs.io/
http://immcantation.readthedocs.io/
https://vdjserver.org/vdjml/
https://bitbucket.org/vdjserver/vdjml
http://vdjserver.org/vdjml/xsd/1/
http://vdjserver.org/vdjml/xsd/1/


corresponding identifier from the FASTA or FASTQ
source file used as input to the alignment software pack-
age. The primary child element for vdj:read is vdj:align-
ment, which captures all of the alignment output for
that particular read sequence. It has two child elements:
vdj:segment_match and vdj:combination.
The foundation of an alignment is the aligned region

of a sequence, the germline gene segments to which the
region aligns, and the alignment positions. This informa-
tion is captured in VDJML using the element vdj:seg-
ment_match. This element takes the read sequence as
its point of reference and specifies the subsequence that

aligns well (or matches) to a particular germline gene
segment (or set of gene segments if the alignments are
identical). A single vdj:alignment element can have an
unlimited number of vdj:segment_match child elements.
Thus, this element has segment_match_id as a required
attribute. Additional required attributes are read_pos0,
read_len, and gl_len, which capture the position in the
sequence where the alignment to a particular germline
gene segment begins, the number of positions in the se-
quence that align to the germline gene segment, and the
number of positions in the germline gene segment that
align, respectively. Optional attributes capture the

Fig. 1 A UML representation of the VDJML schema showing the current scope of VDJML and how the high-level data elements relate to each
other. Each box corresponds to an element. Attributes are listed within a box. A “+” symbol beside an attribute name indicates that it is required.
Labels on edges connecting an element to a child element indicate the number of instances of a child element type that can be included in a
VDJML document

The Author(s) BMC Bioinformatics 2016, 17(Suppl 13):333 Page 8 of 186



percentage of positions that match over the aligned re-
gion (identity) and the alignment score (score) as de-
fined by the software package generating the alignment.
Additional optional attributes (e.g., substitutions) cap-
ture more details about the alignment, as described
below (Table 1).
Child elements of vdj:segment_match are vdj:btop,

vdj:gl_seg_match, and vdj:aa_substitution. The vdj:btop
element captures the BLAST “trace-back operations”
string. The vdj:gl_seg_match element specifies the germ-
line gene segment in the alignment. It has the unique
identifier gl_seq_match_id as a required attribute, be-
cause a single vdj:segment_match element can specify
alignment to multiple different germline gene segments
when those alignments are identical. The required attri-
butes type, name, and gl_pos0 specify the gene segment
type (V, D, or J), the gene segment name according to
the germline database used, and the first position in the
germline gene segment sequence that aligns to the read
sequence. Additional required attributes reference the
gl_db_id (germline database identifier) and aligner_id

(alignment software package identifier) attributes of the
vdj:germline_db and vdj:aligner elements in the vdj:meta
section of the file described above.
Figure 3 shows a sample alignment generated by

IgBLAST for a sequence derived from the IGH locus.
Because the example sequence was derived from the
IGH locus, we expect alignment to V, D, and J gene seg-
ments. Figure 3 shows that the sequence aligns equally
well to the V gene segments IGHV3-23*01 and IGHV3-
23D*01. It aligns equally well to the D gene segments
IGHD2-21*01 and IGHD2-21*02, with two possible
alignments to IGHD2-21*01. Finally, the sequence aligns
best to the J gene segment IGHJ4*02. There are add-
itional lower scoring alignments to IGHV3-23D*02,
IGHJ4*01, and IGHJ5*02.
This information is captured in VDJML using seven

vdj:segment_match elements. Figure 2 shows the corre-
sponding VDJML file with some of the vdj:segment_match
elements left out for space. Figure 4 shows the full vdj:align-
ment element with all vdj:segment_match elements. The
first one shows that 295 positions in the read sequence,

Fig. 2 A VDJML file generated on VDJServer. This figure shows the two main parts of a VDJML file, the vdj:meta and vdj:read_results elements. It
also shows how information about how the file was generated is recorded in the vdj:meta section. The alignment corresponding to this VDJML
file was generated using a local version of IgBLAST. Six of seven vdj:segment_match elements are not shown due to space limitations. These can
be seen in Fig. 4

The Author(s) BMC Bioinformatics 2016, 17(Suppl 13):333 Page 9 of 186



beginning at position 123, align to 295 positions within the
germline gene segments IGHV3-23*01 and IGHV3-
23D*01. Alignment of the read sequence to IGHV3-23*01
or IGHV3-23D*01 produces identical results. Thus, they
are captured within a single vdj:segment_match element.
The resulting alignment has ~93 % sequence identity over
the aligned region and 20 nucleotide substitutions. As can
be seen in the two vdj:gl_seg_match elements, the two
germline gene segments are present in the same germline
database (gl_db_id = “1”), they are V gene segments, the

alignments were produced using the same alignment soft-
ware package (aligner_id = “1”), and the alignment begins at
the first position of the germline gene segment sequence.
To specify the full alignment for a rearranged gene se-

quence, we must specify the combination of segment
matches inferred to comprise the rearranged sequence.
This is captured in the element vdj:combination using
the required attribute segments. The value for segments
is a list of segment match identifiers pointing to the ap-
propriate vdj:segment_match elements, according to the

Table 1 Names and descriptions of optional attributes for segment match and region elements

Attribute Description

num_system Designates the numbering system (e.g., Kabat, IMGT) used to number codon positions

identity Percent of nucleotide sequence identity (e.g., 90 %) between aligned portions of a read
sequence and a germline gene segment sequence

score Alignment score, as defined by the aligner software

insertions Number of nucleotide insertions in the read sequence relative to the germline sequence

deletions Number of nucleotide deletions from the read sequence relative to the germline sequence

substitutions Number of nucleotide substitutions in the read sequence relative to the germline sequence

stop_codon True if a stop codon is present in the read sequence

mutated_invariant True if a codon for a conserved amino acid is mutated in the read sequence

inverted True if the read sequence is a reverse-complement to a germline gene segment

out_frame_indel True if an insertion or deletion resulted in a frame shift

out_frame_vdj True if the V(D)J recombination occurred out of frame

Fig. 3 An IgBLAST-generated alignment of an IGH sequence. The sequence was taken from [40]. The standard IgBLAST alignment output is shown

The Author(s) BMC Bioinformatics 2016, 17(Suppl 13):333 Page 10 of 186



alignment software package. These are the highest scor-
ing segment matches of each type (V, D, J), arbitrarily
using the first one listed when there are multiple seg-
ments with equivalent scores. Figure 2 shows the
vdj:combination element for the example alignment
from Fig. 3. The combination is formed from segment
matches with identifiers 1, 3, and 5, corresponding to
the germline gene segments IGHV3-23*01 or IGHV3-
23D*01, IGHD2-21*01, and IGHJ4*02 (Fig. 4).

Annotation of alignments
After the full alignment has been specified, it can be anno-
tated with regions of interest using the vdj:region child
element of vdj:combination. Regions are specified using
the required name, aligner_id, read_pos0, and read_len at-
tributes. The value of name is the name of the region as
provided by the software package generating the align-
ment or annotation. The corresponding software package
is indicated using the aligner_id attribute to reference the
vdj:aligner element in the vdj:meta section of the VDJML
document. read_pos0 and read_len are used to specify
precisely where in the read sequence the region is located
by specifying the starting location and length, respectively.

Commonly annotated regions include framework regions
(FRs) 1 – 3, CDRs 1 – 2, the junctions between V and D
segments and D and J segments for IGH, TCRB, and
TCRD chains, and the junctions between V and J seg-
ments for IGK, IGL, TCRA, and TCRG chains. Figure 2
shows example annotations of the VD and DJ junctions
and of the FRs and CDRs for an IGH rearrangement.
Alignments can be further annotated using a variety of

optional attributes (Table 1). These can be included in
either the vdj:segment_match or vdj:region elements.

VDJML support library
Since the VDJML format is based on XML, existing XML
software libraries could be used for VDJML generation,
parsing, and validation. However, to simplify use and adop-
tion, we have developed libVDJML – a library for reading,
writing, and validating VDJML data – thus eliminating the
need to write code for the specific tags and structure of
VDJML. By using libVDJML, programs are automatically
insulated from changes and enhancements made to the
VDJML specification over time. The library is implemented
in the C++ language for speed and performance. We

Fig. 4 The full vdj:alignment element from the VDJML file shown in Fig. 2. This figure illustrates how the sections of a vdj:alignment element
jointly specify a full germline alignment

The Author(s) BMC Bioinformatics 2016, 17(Suppl 13):333 Page 11 of 186



currently provide bindings for the Python language and
plan support for R and Java.
The library provides the Vdjml_reader and Vdjml_writer

classes for reading and writing the contents of a VDJML
file. These classes also support compression, so large
VDJML files can be compressed using gzip or bzip2, and
they do not need to be uncompressed in order to read or
write them. As described in the schema above, VDJML
consists of a single metadata element (vdj:meta) and any
number of alignment results (vdj:read and vdj:segment_-
match elements). Upon opening a file, Vdjml_reader reads
the metadata element, but for efficiency, does not read the
VDJML file completely into memory. Instead, it reads only
a single vdj:read element at a time. Writing a VDJML file
operates in a similar fashion. A metadata entry is provided
upon creation of a Vdjml_writer instance, which is written
initially to the output file, and alignment results are incre-
mentally serialized.
Each VDJML element and its associated sub-elements

for an alignment result are represented by an underlying
set of C++ classes, which are instantiated upon parsing of
the alignment result. Attributes for VDJML elements are
accessed through instance variable getter methods of their
respective class in the normal C++ fashion. For elements
with variable cardinality, a map data structure is utilized
allowing for quick access to an individual element or iter-
ation across all elements. Likewise, construction of ele-
ments involves creating the appropriate C++ class with
the desired values and inserting any variable cardinality el-
ements; Vdjml_writer will then transform them into a cor-
rectly structured VDJML element. All of the capability of
the C++ API is available through the Python bindings.
To facilitate conversion of alignment files into VDJML

format, libVDJML currently provides the igblast_parse.py
script that translates an IgBLAST result file into a
VDJML file (Fig. 5). A parser for IMGT/High V-QUEST
alignment files is currently under development.

Results and discussion
We describe VDJML, an XML-based file format designed
to represent the results of aligning immune repertoire se-
quences to germline gene segments. In addition to includ-
ing sufficient information to reconstruct a full alignment
of a sequence to its component germline gene segments,
the standard can capture annotations of biological import-
ance, such as CDRs and base substitutions. To our know-
ledge, this is the first such standard.
We intend for VDJML to be used in at least two ways.

First, it is designed to serve as a common format for soft-
ware developers. If software that generates alignments and
their annotations, such as IgBLAST and IMGT/High V-
QUEST, generated VDJML files as output, then down-
stream analysis packages, such as Change-O [23], could
be designed to take a single, common file format as input.

This would greatly simplify software development by elim-
inating the need to code against multiple different input
formats. Additionally, adoption of VDJML will facilitate
the use of multiple different software packages during
analysis, eliminating the need for data reformatting. Such
standardization is urgently needed. In recent years, there
have been significant improvements in high-throughput
sequencing of rearranged immune receptor genes, result-
ing in widespread application of this technology. This has
in turn resulted in a tremendous amount of activity devel-
oping new software packages to analyze this data type. At
this time, we count at least 24 packages, half of which
were published in the last two years, and we expect this
activity to increase in the coming years.
Our second intended use is as a medium for data shar-

ing. The scientific community at large has recognized the
need for data sharing in support of scientific rigor, trans-
parency, and reproducibility. While raw sequence reads,
or processed reads used as input to alignment software,
can be shared using FASTA/QUAL or FASTQ files, there
is benefit to sharing the alignments and annotations used
for analysis. It can be complicated and time-consuming to
reproduce the full preprocessing, alignment, and annota-
tion steps of an analysis, particularly if one is integrating
data from a variety of sources. For some analyses, repro-
ducing all steps may be necessary, but certainly for many
it is not. For example, it is frequently of interest to ask
whether a particular CDR3 sequence was observed among
any donors in a study; this question could be readily ad-
dressed with data shared in VDJML format, but would re-
quire significant work using FASTA formatted data.
To enhance the transparency of alignments and an-

notations shared in VDJML format, we have devel-
oped elements and attributes for capturing key
features of the processes generating a specific VDJML
file. In general, the information captured within the
vdj:meta section of a VDJML file should enable the
file to be recreated if the starting read sequences (and
scores if applicable) are available.
Common barriers to the adoption of standards in-

clude: (1) a large number of existing, similar standards,
(2) not meeting the needs of the target community, and
(3) difficulty using the standard. As described above,
VDJML is the first file format proposed as a standard for
this domain. As such, we don’t anticipate barriers to
adoption if the format adequately meets the commu-
nity’s needs and is accompanied by tools to facilitate use.
To ensure that the community’s needs are met, VDJML
is being developed by a group that includes software de-
velopers and non-developer users. Participation is open
to all interested. We have an online forum available
through http://forums.vdjserver.org. To facilitate use, we
have created libVDJML, which includes classes for read-
ing and writing VDJML elements. libVDJML currently

The Author(s) BMC Bioinformatics 2016, 17(Suppl 13):333 Page 12 of 186

http://forums.vdjserver.org/


supports conversion of IgBLAST output to VDJML, and
in the near future, will support conversion from IMGT/
High V-QUEST as well.
VDJML is currently supported by software packages de-

veloped by authors of this paper. In addition, it will be
supported by the ImmPort database [39] as an immune
repertoire sequence data reporting format. Currently, for
studies that are included in ImmPort, raw immune reper-
toire sequence data is shared via the Sequence Read Arch-
ive (http://www.ncbi.nlm.nih.gov/sra) and VDJML files are
shared via a reference to the files hosted at VDJServer.
Our test case for developing this system was Rubelt et al.
2016 [40]. The ImmPort study page can be accessed via
the study identifier SDY675. The VDJServer study page
and files can be accessed here: http://wiki.vdjserver.org/
vdjserver/index.php/Rubelt_et_al._2016.
Future development plans for the VDJML format include

providing an enhanced representation of workflows within
the vdj:meta element. For example, we will include ele-
ments to support additional types of processing steps. We
will preserve the alignment element and add elements for
describing annotations such as genotype corrections and
clonal analysis from software such as TIgGER [41] and
Change-O [23] for assigning sequences to clones. Addition-
ally, we plan to add elements for acknowledging the prob-
abilistic nature of inferring rearranged sequences and
assigning annotations. Future plans for libVDJML include
providing bindings to additional languages and expanding
the suite of parsers available so that output from existing
alignment software can be readily converted to VDJML.
We invite participation from the larger community, both

in the form of suggested revisions and enhancements to the
schema, as well as in the form of code contributions.

Acknowledgements
Mack Dressler provided significant editing support including making Figs. 1
and 5 and generating the Endnote Reference Library.

Declarations
This article has been published as part of BMC Bioinformatics Volume 17
Supplement 13, 2016: Proceedings of the 13th Annual MCBIOS conference.

The full contents of the supplement are available online at http://
bmcbioinformatics.biomedcentral.com/articles/supplements/volume-17-
supplement-13.

Funding
Development of VDJML was supported by a Burroughs Welcome Fund Career
Award and an NIAID-funded R01 (AI097403) to LGC. Florian Rubelt and Sanchita
Bhattacharya were supported, in part, by the Bioinformatics Support Contract
(BISC) HHSN272201200028C and the National Institute of Allergy and Infectious
Diseases grant U19 AI090019. SHK was supported, in part, by National Institute
of Allergy and Infectious Diseases grant R01 AI104739. NTG was supported, in
part, by a PhRMA foundation pre-doctoral informatics fellowship. JAVH received
research support from the National Library of Medicine of the National Institutes
of Health (T15 LM07056). Publication charges for this article were paid from
AI097403 to LGC.

Availability of data and material
Documentation for VDJML is available from https://vdjserver.org/vdjml.
Source code for the tools is available from the VDJML Bitbucket repository at
https://bitbucket.org/vdjserver/vdjml. An archive can be downloaded
anonymously from https://bitbucket.org/vdjserver/vdjml/get/v0.1.4.tar.gz.

Authors’ contributions
The VDJML schema was developed in group calls by all authors. MKL
developed initial versions of the libVDJML code. EAS developed the
converter from IgBLAST to VDJML. SC and IT are the current developers. All
authors read and approved the final manuscript.

Authors’ information
Contributions from Mikhail K. Levin and Edward A. Salinas were made while
they were at UT Southwestern.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Author details
1Department of Clinical Sciences, UT Southwestern Medical Center, 5323
Harry Hines Boulevard, Dallas, TX 75390-9066, USA. 2Bank of America
Corporate Center, 100 North Tryon Street, Charlotte, NC 28202, USA. 3Broad
Institute, 75 Ames Street, Cambridge, MA 02142, USA. 4Institute for
Computational Health Sciences, University of California San Francisco,
Mission Hall, 550 16th Street, 4th Floor, Box 0110, San Francisco, CA 94158,
USA. 5Department of Biological Sciences and The IRMACS Centre, Simon
Fraser University, 8888 University Drive, Burnaby V5A 1S6, British Columbia,
Canada. 6Department of Immunobiology, University of Arizona School of

Fig. 5 An example workflow showing how libVDJML and VDJML are used with upstream and downstream software packages. Ovals indicate file
formats, and rectangles indicate software packages. This workflow shows how raw sequence read data in FASTQ format is processed to generate
FASTA-formatted data for input into germline alignment packages, such as IgBLAST and IMGT/High V-QUEST, which each output their own format.
These output files can be read by libVDJML for conversion into VDJML format, which can then be taken as input by a variety of downstream programs

The Author(s) BMC Bioinformatics 2016, 17(Suppl 13):333 Page 13 of 186

http://www.ncbi.nlm.nih.gov/sra
http://wiki.vdjserver.org/vdjserver/index.php/Rubelt_et_al._2016
http://wiki.vdjserver.org/vdjserver/index.php/Rubelt_et_al._2016
http://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-17-supplement-13
http://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-17-supplement-13
http://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-17-supplement-13
https://vdjserver.org/vdjml
https://bitbucket.org/vdjserver/vdjml
https://bitbucket.org/vdjserver/vdjml/get/v0.1.4.tar.gz


Medicine, 1656 E. Mabel Street, P.O. Box 245221, Tucson, AZ 85724-5221,
USA. 7New Zealand eScience Infrastructure, University of Auckland, Level 10,
49 Symonds Street, Auckland, New Zealand. 8Texas Advanced Computing
Center, Research Office Complex 1.101, J.J. Pickle Research Campus, Building
196, 10100 Burnet Road (R8700), Austin, TX 78758-4497, USA.
9Interdepartmental Program in Computational Biology and Bioinformatics,
Yale University, 300 George Street, Suite 505, New Haven, CT 06511, USA.
10School of Biomedical Engineering, Science and Health Systems and
Department of Microbiology and Immunology, College of Medicine, Drexel
University, 3141 Chestnut Street, Philadelphia, PA 19104, USA. 11The IRMACS
Centre (ASB 10905), Simon Fraser University, 8888 University Drive, Burnaby,
BC V5A 1S6, Canada. 12School of Biomedical Engineering, Science and Health
Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104,
USA. 13Department of Neurology and Neurotherapeutics, UT Southwestern
Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9036, USA.
14Stanford University School of Medicine, 279 Campus Drive, Stanford, CA
94305-5101, USA. 15Department of Molecular Biology and Biochemistry and
Faculty of Health Sciences, Simon Fraser University, Blusson Hall, Room
11300, 8888 University Drive, Burnaby, BC V5A 1S6, Canada. 16Department of
Pathology, Yale School of Medicine, 300 George Street, Suite 505, New
Haven, CT 06511, USA. 17J. Craig Venter Institute, 4120 Capricorn Lane, La
Jolla, CA 92037, USA. 18Department of Pathology, University of California, San
Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA. 19Division of Vaccine
Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle,
La Jolla, CA 92037, USA. 20Department of Immunobiology, Yale School of
Medicine, New Haven, CT, USA.

Published: 6 October 2016

References
1. Tonegawa S. Somatic generation of antibody diversity. Nature. 1983;

302(5909):575–81.
2. Schatz DG, Oettinger MA, Schlissel MS. V(D)J recombination: molecular

biology and regulation. Annu Rev Immunol. 1992;10:359–83.
3. Reynaud CA, et al. Formation of the chicken B-cell repertoire: ontogenesis,

regulation of Ig gene rearrangement, and diversification by gene
conversion. Adv Immunol. 1994;57:353–78.

4. Berek C, Milstein C. The dynamic nature of the antibody repertoire.
Immunol Rev. 1988;105:5–26.

5. Lythe G, et al. How many TCR clonotypes does a body maintain? J Theor
Biol. 2016;389:214–24.

6. Warren RL, et al. Exhaustive T-cell repertoire sequencing of human
peripheral blood samples reveals signatures of antigen selection and a
directly measured repertoire size of at least 1 million clonotypes. Genome
Res. 2011;21(5):790–7.

7. Hou XL, et al. Current status and recent advances of next generation sequencing
techniques in immunological repertoire. Genes Immun. 2016;17(3):153–64.

8. Georgiou G, et al. The promise and challenge of high-throughput
sequencing of the antibody repertoire. Nat Biotechnol. 2014;32(2):158–68.

9. Kirsch I, Vignali M, Robins H. T-cell receptor profiling in cancer. Mol Oncol.
2015;9(10):2063–70.

10. Calis JJ, Rosenberg BR. Characterizing immune repertoires by high throughput
sequencing: strategies and applications. Trends Immunol. 2014;35(12):581–90.

11. Yaari G, Kleinstein SH. Practical guidelines for B-cell receptor repertoire
sequencing analysis. Genome Med. 2015;7:121.

12. Ye J, et al. IgBLAST: an immunoglobulin variable domain sequence analysis
tool. Nucleic Acids Res. 2013;41(Web Server issue):W34–40.

13. Alamyar E, et al. IMGT((R)) tools for the nucleotide analysis of
immunoglobulin (IG) and T cell receptor (TR) V-(D)-J repertoires,
polymorphisms, and IG mutations: IMGT/V-QUEST and IMGT/HighV-QUEST
for NGS. Methods Mol Biol. 2012;882:569–604.

14. Volpe JM, Cowell LG, Kepler TB. SoDA: implementation of a 3D alignment
algorithm for inference of antigen receptor recombinations. Bioinformatics.
2006;22(4):438–44.

15. Munshaw S, Kepler TB. SoDA2: a Hidden Markov Model approach for
identification of immunoglobulin rearrangements. Bioinformatics.
2010;26(7):867–72.

16. Gaeta BA, et al. iHMMune-align: hidden Markov model-based alignment and
identification of germline genes in rearranged immunoglobulin gene
sequences. Bioinformatics. 2007;23(13):1580–7.

17. Wang X, et al. Ab-origin: an enhanced tool to identify the sourcing gene
segments in germline for rearranged antibodies. BMC Bioinformatics.
2008;9 Suppl 12:S20.

18. Ohm-Laursen L, et al. No evidence for the use of DIR, D-D fusions, chromosome
15 open reading frames or VH replacement in the peripheral repertoire was
found on application of an improved algorithm, JointML, to 6329 human
immunoglobulin H rearrangements. Immunology. 2006;119(2):265–77.

19. Souto-Carneiro MM, et al. Characterization of the human Ig heavy chain antigen
binding complementarity determining region 3 using a newly developed
software algorithm, JOINSOLVER. J Immunol. 2004;172(11):6790–802.

20. Zhao S, Lu J. A germline knowledge based computational approach for
determining antibody complementarity determining regions. Mol Immunol.
2010;47(4):694–700.

21. Chen Z, et al. Clustering-based identification of clonally-related
immunoglobulin gene sequence sets. Immunome Res. 2010;6 Suppl 1:S4.

22. Barak M, et al. IgTree: creating Immunoglobulin variable region gene
lineage trees. J Immunol Methods. 2008;338(1–2):67–74.

23. Gupta NT, et al. Change-O: a toolkit for analyzing large-scale B cell
immunoglobulin repertoire sequencing data. Bioinformatics. 2015;31(20):3356–8.

24. Vander Heiden JA, et al. pRESTO: a toolkit for processing high-throughput
sequencing raw reads of lymphocyte receptor repertoires. Bioinformatics.
2014;30(13):1930–2.

25. Bolotin DA, et al. MiTCR: software for T-cell receptor sequencing data
analysis. Nat Methods. 2013;10(9):813–4.

26. Cortina-Ceballos B, et al. Reconstructing and mining the B cell repertoire
with ImmunediveRsity. MAbs. 2015;7(3):516–24.

27. D’Angelo S, et al. The antibody mining toolbox: an open source tool for the
rapid analysis of antibody repertoires. MAbs. 2014;6(1):160–72.

28. Imkeller K, et al. sciReptor: analysis of single-cell level immunoglobulin
repertoires. BMC Bioinformatics. 2016;17:67.

29. Kuchenbecker L, et al. IMSEQ–a fast and error aware approach to
immunogenetic sequence analysis. Bioinformatics. 2015;31(18):2963–71.

30. Nazarov VI, et al. tcR: an R package for T cell receptor repertoire advanced
data analysis. BMC Bioinformatics. 2015;16:175.

31. Ralph DK, Matsen FAt. Consistency of VDJ rearrangement and substitution
parameters enables accurate B cell receptor sequence annotation. PLoS
Comput Biol. 2016;12(1):e1004409.

32. Safonova Y, et al. IgRepertoireConstructor: a novel algorithm for antibody
repertoire construction and immunoproteogenomics analysis.
Bioinformatics. 2015;31(12):i53–61.

33. Schaller S, et al. ImmunExplorer (IMEX): a software framework for diversity and
clonality analyses of immunoglobulins and T cell receptors on the basis of
IMGT/HighV-QUEST preprocessed NGS data. BMC Bioinformatics. 2015;16:252.

34. Thomas N, et al. Decombinator: a tool for fast, efficient gene assignment in
T-cell receptor sequences using a finite state machine. Bioinformatics.
2013;29(5):542–50.

35. Zhang W, et al. IMonitor: a robust pipeline for TCR and BCR repertoire
analysis. Genetics. 2015;201(2):459–72.

36. Brusic V, et al. Computational resources for high-dimensional immune
analysis from the Human Immunology Project Consortium. Nat Biotechnol.
2014;32(2):146–8.

37. Bray T. Extensible Markup Language (XML) 1.0; W3C Recommendation 10-
February-1998. W3C 1998 4/27/2016]; Available from: https://www.w3.org/
TR/1998/REC-xml-19980210.

38. Achard F, Vaysseix G, Barillot E. XML, bioinformatics and data integration.
Bioinformatics. 2001;17(2):115–25.

39. Bhattacharya S, et al. ImmPort: disseminating data to the public for the
future of immunology. Immunol Res. 2014;58(2–3):234–9.

40. Rubelt F, et al. Individual heritable differences result in unique cell
lymphocyte receptor repertoires of naive and antigen-experienced cells. Nat
Commun. 2016;7:11112.

41. Gadala-Maria D, et al. Automated analysis of high-throughput B-cell
sequencing data reveals a high frequency of novel immunoglobulin V gene
segment alleles. Proc Natl Acad Sci U S A. 2015;112(8):E862–70.

The Author(s) BMC Bioinformatics 2016, 17(Suppl 13):333 Page 14 of 186

https://www.w3.org/TR/1998/REC-xml-19980210
https://www.w3.org/TR/1998/REC-xml-19980210

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Design priorities
	Schema overview
	Representation of alignments
	Annotation of alignments
	VDJML support library

	Results and discussion
	Acknowledgements
	Declarations
	Funding
	Availability of data and material
	Authors’ contributions
	Authors’ information
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

