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A B S T R A C T

Stochastic models allow investigators to simulate reactions in a discrete way that can account for fluctuations
that are otherwise ignored within a deterministic approach. Integrated particle system (IPS) models are a form
of stochastic model that take spatial distributions, environmental factors, and agent migration into considera-
tion. Unlike agent based models (ABM), IPS models only rely on a set of general reactions to describe the
interactions of molecules/entities, allowing for an easy cause-effect connection between macroscopic phenom-
ena and microscopic behavior. However, IPS models currently do not track individual agents or apply
manipulations to individual agent behavior based on their specific location or their individual history.
Therefore, IPS models cannot incorporate agent-based manipulations and tracking while still relying on a set
of basic assumptions that are needed to easily connect emergent phenomena to simplistic microscopic
behaviors. Here we propose an IPS modeling framework where we convert the exact Gillespie algorithm into
a 2 dimensional lattice space that allows for environmental factors where molecules can move stochastically,
generating an overall heterogeneous molecule distribution. Individual molecules can be tracked without
describing the rules of interaction for each specific individual molecule, forming a tracked IPS (TIPS) modeling
framework. However, since each individual molecule is tagged, agent-based manipulations and the ability to
alter agent behavior due to history can be incorporated into TIPS, allowing one to model biological systems that
would otherwise have to rely on a pure ABM. We apply the TIPS modeling framework to STIM1(stromal
interaction molecule 1)-Orai1(calcium release-activated calcium channel protein 1) binding and motion, in T
cells as a result of T cell receptor activation a key component of the calcium response within lymphocytes that
leads to the adaptive response of T cells in an immune response. Within this biological setting we show that
observed patterns of reduced motion following activation can be explained by a diffusion trap coming from
changes in the environment of interaction without any real change in the molecules movement rates.

1. Introduction

The Gillespie algorithm is a commonly used stochastic modeling
framework that allows investigators to simulate reactions in a discrete
way. This approach allows investigators to develop a model that can
account for fluctuations that are otherwise ignored within a determi-
nistic approach (Gillespie, 1977). However, the exact Gillespie algo-
rithm approach assumes all reactions occur between evenly distributed
entities/molecules in a well-mixed solution. In certain cases, such as
predator-prey models, both spatial distributions and component
migration play a large role in the predicted outcome. In these cases,
rare events can emerge from the heterogeneity of the environment and
individualized migration (Zelnik et al., 2015). In these cases an
interacting particle system (IPS) model can allow for a spatially
stochastic model to be able to easily incorporate the heterogeneous

mixing of agents within the model as well as environmental depen-
dencies by allowing discrete agents within the model to interact locally
and migrate between patches that are spatially connected. These
models rely on only basic assumptions and thus can retrace complex
phenomena to basic components (Behar et al., 2014; Shnerb et al.,
2000; Zion et al., 2010). This differs from agent based models (ABM)
which describe each particular agent separately, making the model
much more computationally intensive and the cause-effect connection
of emergent events much more difficult to understand and quantify
(Black and McKane, 2012).

However, IPS models look exclusively at population dynamics and
cannot detail the path or history of an individual agent within that
model. As the ability to image and track individual molecules increases
so does the benefit of modeling frameworks that allows one to explicitly
track each molecule in a model rise. Tracking individual molecules in
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the model (and not just the data) becomes especially important if we
want to tease out if environmental effects or individual changes in
dynamics and interactions are the root cause for differences in motion
of molecules we observe experimentally within the system.
Furthermore, in such a model we can incorporate the impact of an
entities history on its potential for action and motion. Something which
clearly impacts many biological behaviors (Alam et al., 1996; Busch
et al., 1998; Jameson et al., 1995).

1.1. Modeling scheme

Here we present a modeling framework that utilizes the exact
spatial Gillespie algorithm binned into a 2 dimensional lattice space
where molecules can move stochastically between bins generating an
overall heterogeneous molecule distribution IPS. Our modeling scheme
hinges around storing molecular information within hierarchical
structure arrays. Molecules that are tracked, rely on history, or that
have non-uniform rate distributions are individually tagged with a
unique number. Tracking the individual molecules enables us to (1)
track individual molecular location, form, and interactions during our
simulation, and (2) store the interaction and history of the component
molecules that make up molecular complexes. By creating a model that
behaves as an IPS model while tracking individual molecule locations
in a way consistent with how we image these molecules experimentally,
we provide a distinct way to not only validate the dynamics of motion
within the model, but to also a way to predict how the alteration of
these dynamics would affect how we would observe motion within the
system experimentally. Furthermore, the ability to incorporate in a
stochastic simulation some aspects of an ABM, such as site dependent
differences in individual agent rates or the ability to alter an individual
agent's dynamics due to the history of the agent, provides a novel
framework for modeling a multitude of biological systems in which we
can provide a minimal set of assumptions while still incorporating
many aspects of an ABM. By doing so, we hope to create a computa-
tionally friendly framework in which a model can be looked at for both
individual and population dynamics while still allowing for an easy
connection between the emergent phenomena and the underlying
molecular dynamics.

1.2. Immunological example

Calcium is utilized as a secondary messenger signal in many
adaptive cellular dynamics (Feske, 2007; Hogan et al., 2010; Stiber
and Rosenberg, 2011). Recent studies have suggested that calcium
plays a large role in immune cell differentiation, maturation and
response to T cell receptor (TCR) signaling (Oh-hora et al., 2013).
Cells actively move calcium both into the Endoplasmic Reticulum (ER)
and out of the cell through the Plasma membrane (PM) to maintain a
strong gradient to allow for effective signaling. In T cells, antigen-
binding leads to the release of internal stores of calcium from the ER
(Lewis, 2001). The loss of calcium within the ER releases STIMs, which
dimerize and localize at the ER/PM junction, where they bind and
activate Orai (Liou et al., 2007; Luik et al., 2008; Stathopulos et al.,
2006; Stathopulos et al., 2013; Wu et al., 2006). Activated Orai
channels become permeable to calcium, causing a flux of calcium to
move across the membrane. Recent research has suggested that STIM
and Orai may actually move in a non-directed fashion and that this
localization may be due to the normal outcome of diffusion like
movement near an obstruction, known as a diffusion trap (Kilch
et al., 2013; Wu et al., 2006, 2014).

Here we apply our TIPS modeling framework to STIM1-Orai1
molecular interactions utilizing experimentally derived rates of reac-
tion (Kilch et al., 2013). We utilize our novel technique of tracking our
simulated stochastic model, allowing us to simulate how particles
within our model would be observed during single particle tracking
experiments. We show that this framework can help us to model a

system of many agents ( > 1000) while being able to distinguish the
location and history in individual ones. We simulated a range of
experiments, to try and distinguish the causes for the alteration in
diffusion rates, of STIM1 molecules pre and post ER calcium release
observed in previous single particle tracking experiments (Wu et al.,
2014). We found that the observed changes in STIM and Orai1 motion
following TCR activation can indeed be described without any recourse
to localizing signals or changes in rates of motion. Rather, they appear
to arise simply from the localization of STIM1 motion to the ER/PM
junction following the binding of Orai1 (Luik et al., 2008; Wu et al.,
2006, 2014).

2. Methods

2.1. Modeling framework

In order to create our modeling framework, we utilized the exact
Gillespie algorithm (Gillespie, 1977). We separated our modeling
environment into an m by n binned 2-d space in which each bin
represents a square area in which we considered molecules to be well
mixed within. We structured our framework to allow molecules to
move from bin to bin based off the bin size, the molecules rate of
motion, and environmental factors allowing for heterogeneous mixing
(Kilch et al., 2013).

The exact Gillespie algorithm utilizes a random number generator
to choose the next event to occur based on the probability of each
event's occurrence. The probability of a reaction event between two
molecules combining, Ru, occurring within the next time interval, dt, is
calculated as the average probability that a particular combination of
reactants inside volume, V, will react within the time interval, cudt,
multiplied by the unique number of reactant combinations, hu
(Gillespie, 1977).

P R dt c dt h( ) = *u u u

cu is known as the stochastic rate constant and is related to the
deterministic reaction rate constant, Ku, by the relationship:

c k V= *u u

Due to this, if we assume Maxwell-Boltzmann velocity distributions
we can adjust the stochastic rate constant of a 2 molecule colliding
reaction, cu, within an individual bin, i, by a factor of the number of
bins, N, which is equivalent to the inverse square of the bin's edge
length (Gillespie et al., 2014).

c N c= *ui u

Reactions in which individual occurrences are independent of the
volume, such as decomposition, are not adjusted based on bin size.

It is important to state that this adjustment does not affect the rate
of occurrence of a homogenously mixed environment. If the environ-
ment is evenly mixed of the reactants, r1 and r2, than the overall rate
that the reaction, Ru, will occur will remain constant, as each bin will
contain

N
1 the number of molecules within it and the probability that

the event occurs within a single bin will be
N
1 the overall rate that the

event will occur.

P R dt c dt h N c dt
N

h
N

P R dt( ) = * = * * 1 * = 1 * ( )ui ui ui u
u

u2

However, when the molecules become heterogeneously distributed,
the probability of an event to occur within a single bin will be
dependent on the unique combinations of reactions within that bin
and the overall probability of occurrence of an event, Ru, will differ
from the homogeneous probability. Rates of reaction and motion can
be specified at a bin by bin level, allowing for heterogeneity of rates of
reaction/motion due to environmental factors. A more extreme exam-
ple of changing rates of motion in a heterogeneous way is to create
restricted areas of motion that are molecule specific.
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Our modeling framework allows molecules to able to move between
bins. Molecules are commonly modeled with diffusive movement. In
two dimensional diffusion, a molecule of type u has mean squared
displacement, Xu

2 , that is equal to four times its rate of diffusion, Du,
times the time displaced, dt. If we consider the event of the movement
of molecule type u, Mu, between bins of volume, Vbin, then we can set
an average probability of movement in time dt as:

P M dt
D

V
dt h M dt h( ) =

4*
* = *u

u

bin
u u u

If the environment is split to only a single bin, movement cannot
occur between bins and the model reduces to an exact Gillespie
algorithm. As the environment is split into more bins, the environment
becomes more continuous, better resembling nature. In a homoge-
neous environment, the number of bins does not affect the rate in
which reactions occur globally. However, the rate in which agents move
between bins is increased, making the split of the environment into
more bins more computationally demanding. In order to simulate the
occurrence of an event, the rate of occurrence is calculated for each
possible event at each bin location based on the environment and the
quantity of molecules, as described above. The choice of what event and
where it occurs is chosen by a random number generator, weighted by
the event's rate of occurrence. If an agent type within the reaction is
tagged, a random number is used to choose which agent preforms the
reaction. Another random number between 0 and 1, r, is generated to
calculate tau, the time it takes for the chosen event to occur (Gillespie,
1977). This calculation is done by the formula:

⎛
⎝⎜

⎞
⎠⎟tau Log r

TotalRate
= (1/ )

Rates within our simulations were updated only in the bins in which
the reaction occurred or an agent moved to or from. We have provided
a pseudo code of how a simulation would advance (Fig. 1)..

2.2. Hierarchical structure

Our model relies on storing the component makeup of molecular
complexes in a hierarchical structure based on the rules of component
reactions within the simulation. Each complex type is stored inside its
own cell array. The most basic complex of a single molecule that is
tagged is stored as the tag number within a cell, i.e. [1]. When this
combines with another single molecule, the two molecules are removed
from their individual cells and combined within a single cell represent-
ing a complex i.e. [1 2]. Each location within this cell is specific for a
certain molecule or complex type, in which the number represents the
tag of an individual molecule. If we were to combine this complex, [1
2], with another molecule, the behavior of the individual components
would dictate the hierarchical structure that is formed. If either
component tagged as 1 or 2 behave individually when combining, then
the new combination remains on the same level as these components,
i.e. [1 2 3]. However, if components 1 and 2 behave as a single
component within the new complex then they move to a sub-level
within the complex that is within a second cell, i.e. [[1 2] 3]. If this
complex behaves as a single component within another complex, this
would again be placed within its own cell, forming another level within
the complex.

When a tagged complex type is chosen at a specific (x,y) location,
an individual complex of that form from that location is chosen from
its cell array at random. If the event is motion, the complex is moved
from its current array into the array corresponding with its new bin.

Fig. 1. Pseudo code of modeling framework. The simulation is initiated, placing molecules and calculating rates based on the position of molecules. A time step is chosen based on a
random number and the overall rate of event occurrence. If this time step is greater than the next sample time, then the positions of all tagged molecules within the simulation are
surveyed and recorded. Next an event is chosen. If the event is a motion event and the complex chosen to move is tagged, the specific complex chosen to be moved is chosen randomly
and is moved to a cell array corresponding to the complex type and the new bin. If the complex chosen to move is not tagged, quantities are updated similar to an IPS modeling
framework. If the event chosen is a reaction and tagged, the reactants are chosen at random and the form of the hierarchical structures of the molecular complexes are adjusted based on
the type of reaction. The resultant complexes are then moved to their appropriate cell arrays. If any part of the interaction has a component that is not tagged, the quantity of that
complex type is simply adjusted. All steps after the initiation are repeated until the end of the simulation.
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Molecules which are not being tracked do not need to be tagged and
instead just the number of molecules within a bin can be recorded.
In these cases, the hierarchical form can simply not contain the non-
tracked molecule's information and a change in form which contains
a non-tracked agent being added or removed can be completed by
adding or subtracting from the non-tracked agent's counter and
then by moving the cell array in which the component is located
within.

2.3. Agent-based manipulations, history and tracking

We can apply individualized agent reaction and movement rates
into simulations using our modeling framework. To do so, a vector for
each reaction that is agent dependent runs parallel to the cell array in
which the agent's compositional information is stored. This vector
dictates a value of scaling of the stochastic rate constant, cui. When we
move the agent from its current cell array to another, either by motion
or by a reaction, the scaling value is moved from its current vector to
the vector corresponding to the new cell array. These values are used
when updating the rate of occurrence of the reactions and when
choosing the agent which reacts by weighing the random agent choice
by the scaling values.

To track history and use it to influence rates of action, an array that
stores values corresponding to historical events is generated, indexed
by the molecular/complex tag. When an event occurs in which history
effects a reaction, this array is updated and a transfer function is
utilized to determine the new scaling factor for the event/events in
which history effects. These values can record important interactions
and implement them into individualized reaction rates, causing history
to effect the future behavior of an individual molecule or a complex.

We created a simple model to show the implementation of
individualized rates and history (Fig. 2)..

We incorporated the ability to track individual molecules within our
spatial Gillespie algorithm by adding a numerical tag to each molecule
that we wished to track. In order to be consistent with experimental
data, the simulation space can be surveyed at intervals, similar to the
rate of digital imaging in experimental tracking experiments. This
process takes into consideration the hierarchical form and deconstructs
it. The component locations within a complex are used to determine
where tracked molecules are in space, time, and form. We have created
functions in MATLAB to allow for a multitude of reactions and tracking
that is available via our lab's GitHub on our lab's website (http://
simlab.biomed.drexel.edu).

2.4. STIM/Orai implementation

STIM exists in the form of monomers, dimers, and in dimers
conjugated with Orai (Kilch et al., 2013; Wu et al., 2014). In monomer

or dimer form, STIM and Orai were free to move by random motion,
but when conjugated to each other, they were restricted the ER-PM
junction (the area of the ER and PM that are close enough to allow
STIM-Orai interactions). STIM was able to bind to Orai in 4 states
(OS1-OS4), representative of 1–4 STIM dimers bound to Orai. The
binding of STIM dimers became within our model became less
probable as more STIM dimers were bound to a specific Orai tetramer
by a negative cooperatively factor of α (Fig. 3) (Hou et al., 2012; Kilch
et al., 2013). To generate our simulation we considered STIM mono-
mers and Orai monomers as being tagged. We set the reaction, R1, to
combine two STIM monomers, S1 and S2, into a STIM dimer of form
SD1=[S1, S2], and the reaction, R2, to reverse this combination. We
considered a combination of an Orai molecule with dimers as OS1-
OS4. When we combined one dimer with Orai, we created the
hierarchical form OS1=[O1, SD1] =[O1, [S1, S2]]. The Orai molecule
in our simulation was on the same hierarchical level as a STIM dimer,
but that a STIM monomer was at a lower level, since the STIM dimer
had to be removed from Orai before an individual monomer can be part
of a reaction. Since our model called for the ability for any STIM dimer
to be removed from OS2-OS4, STIM dimers behaved as independent
components within the complex and remained on the same hierarchical
level. Thus, we made OS2 of the form OS2=[[O1], [SD1], [SD2]] and so
on. If we had a reaction in which OS2-OS4 was chosen to change into a
STIM dimer and an Orai form with 1 less bound dimer, we chose a
dimer at random to remove from the structure..

The space of the cell is simulated by a binned 2D space (Fig. 4). The
environment was split between the general PM and the ER-PM
junction. The area of simulation was set to be a 50 by 50 sized grid
with each block being of an area of 0.01 µm^2 (length of .1 µm). The
ER-PM junction was taken to be a 10 by 10 grid centered within the
simulation space, in agreeance with the average puncta area that
corresponded to the calculated edges of the diffusion trap observed
by Wu, Covington, and Lewis (Wu et al., 2014)..

Our rates of diffusion were based off previously published research
by Wu, Covington, and Lewis (Wu et al., 2014). The diffusion of a
conjugant of molecules i and j is calculated by the formula:

D D D
1 = 1 + 1

ij i j

The 2-dimensional direction in which a molecule moved was
chosen randomly between left, right, down, or up. When molecules
move out of the field of view, a molecule corresponding to the
molecule that left was produced coming in from the other side,

Fig. 2. A model of experienced immune cell motion to the tissue without the need for
attractors. All immune cells started in bin 1. Antigen is uniformly spread across lymph
compartments (1, 2, 3) and is not limiting. Individual binding rates, of Immune cells c,
were set to a constant rate, C, multiplied by a scaling factor ranging from 1 to 100 at
increments of 1. These agents moved between bins 1, 2, and 3 at a rate of m set to 1.
Agents moved from bin 3 to bin 4 at a rate, mh, which was dependent on the agent's
history of binding. The scaling of mh to m was set by the number of binding events that
occurred, Nh, ranging from zero, if the specific cell had not undergone any binding, to 1 if
the agent had undergone 5 or more binding events. The scaling factors were 0.0625,
0.125, 0.25, and 0.5 for 1–4 binding events respectfully.

Fig. 3. Simulation Reactions. STIM (S), STIM dimer (SD), and Orai (which is either free
(OF) or bound to up to 4 STIM dimers (OS1-OS4)). STIM monomers have a diffusion
rate of 0.116 µm^2/s and free Orai have a diffusion rate of 0.09 µm^2/s. R1 and R2
represent the rates of STIM dimer on and off rates. R and R‘ represent the on and off
rates of a STIM dimer with a free Orai with α representing the change in binding rates
based on the conformation of the Orai conjugate.
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making the simulation environment act as if it was continuous.
However, the new molecule was marked with a new tag, so that we
did not consider its location when analyzing the movement of
the first molecule. This allowed us to maintain our count of
molecules without causing errors within our tracking. In general,
unless stated otherwise, our model followed the rates depicted in
Kilch et al. Kilch et al., (2013).

With our model, we simulated 60 s time periods. First we allowed
the STIM to equilibrate for 30 s and then we tracked it for another 30 s.
Each simulation was of 1000 STIM molecules and 10 simulations were
used per each initial condition. We analyzed individually monomer,
dimer, and each conjugant's motion without the presence of interac-
tions. We then looked at the motion in the presence of interactions with
varying levels of Orai. When the simulation began molecules were
randomly placed around the field of view and tagged with a number. At
the set time interval of 0.1 s, their location and form were recorded,
allowing us to track individual molecules. When estimating the current
of calcium influx, we used the formula (Kilch et al., 2013; Hoover and
Lewis, 2011; Li et al., 2011):

Icrac OS OS OS OS=0. 001* 1 + 0. 025* 2 + 0. 125* 3+ 4

2.5. Diffusion analysis methods

We analyzed observed diffusion rates of individual molecules using
tools from a previously published Monte Carlo method where the log of
the displacement squared is compared to the log of time (O’Connor
et al., 2011). We chose an observation time step of 0.1 s. For each
simulation, we calculated the mean squared displacement as a function
of time. r t( )2 represents the mean squared displacement for a time of t
for an individual STIM molecule k. N is the number of STIM molecules
that are observed for a time of t or longer. X t( )k is the two-dimensional
position of the STIM molecule k at the time of t.

∑r t
N

X t t X t( ) = 1 ( + ) − ( )
k

N
k o

k
k o

k2
=1

2

In 2-dimensional random motion, the displacement of molecule
squared r t( )2 is equal to 4 times the rate of diffusion (D) multiplied by
time (t).

r t Dt( ) =42

Taking the natural logarithm of both sides of this equation yields:

r t D tlog ( ( ) ) = log (4 ) + log ( )2

A weighted least-squared regression was utilized to find the slope of
the logarithm of the mean squared displacement against the logarithm
of time. The measurement of the logarithm of mean squared displace-

ment was weighted according to the reciprocal of the logarithm of the
displacement squared variance divided by its mean squared displace-
ment, giving us a value for the variance of the logarithm of the mean
squared displacement. We calculated these measurements for the first
1, 3, and 30 s of each simulation. We defined diffusive motion as a
sample with a slope significantly greater than 0.9. For each data set, a t-
test was used to calculate a p value for the hypothesis that the slope is
equal to or greater than 0.9, which is representative of our definition of
diffusive motion. This is because if motion is perfectly diffusive the
slope should be 1. We further analyzed the observed diffusion rate
based on 1-time step for individual molecule types. Here we took the
mean displacement observed for 1-time step and divided it by 4 times
the time step length.

We next calculated each molecule's diffusion individually. In this
analysis we allowed for each step to be calculated as a new start time, to.
For each individual STIM molecule in our simulation we calculated the
mean squared displacement as a function of the time interval. By
considering the displacement of each individual molecule, we allowed
each calculable step size of size t to be considered an individual data
point. Thus, the average mean squared displacement represents the
average mean squared displacement for a step size of t over the entire
observable time of the STIM molecule in question. When the amount of
steps of size t, N, dropped below the arbitrary value of 5 data points we
did not take the calculated mean displacement into consideration, and
the STIM molecule was not taken into consideration if it was not
observed in our simulation for at least 1 s (10 time steps).
Furthermore, we limited our maximum time step to an arbitrary time
step of 3 s (30 time steps). To calculate D of the individual molecule we
considered a non-weighted least-squares regression of displacement
and time. We then considered the value we would get for D if the
individual molecule was moving diffusively. To do so, we fit the log of
the displacement to the log of time with a fixed slope of 1. We took the
fit intersection and divided by 4, due to our simulation being in 2-
dimensions, and defined this as our observed diffusion rate. In this way
we calculated an observed diffusion rate for every given molecule
regardless of when we started observing it relative to its dispersal in the
cell (the PM, the ER or the PM-ER junction).

3. Results

3.1. Individual molecule diffusion analysis

We ran simulations of individual molecule motion with and without
the ability to interact. We considered free STIM motion to behave in a
pre-antigen binding way where the ER Ca2+ stores are filled. We first
analyzed all molecule types in isolation to determine how the bound-
aries of a diffusion trap would affect their ability to move. In order to
calculate if movement of fixed state molecules were diffusive, for each
time point we calculated the mean square displacement of STIM
molecules from their initial location. To verify that in principle the
molecules can create a diffusive pattern we expect we first looked at the
mean square displacement of 1-time step for STIM molecules. We
noticed that STIM forms not confined to the ER/PM junction fully
matched the diffusion rates of their given value (Table 1). STIM in its
Orai/STIM conjugate form showed a slight reduction in its diffusion.

We then calculated diffusion rates for time periods of 1,3, and 30 s
and determined if it appeared to be diffusive or sub diffusive (as
described inMethods). We found that when analyzing diffusion over a
short period of time (1 and 3 s), that STIM monomers and dimers both
moved diffusively in our model and the rate of diffusion observed
through our model was similar to their input diffusion rates (Table 1).
Furthermore, this rate fit with the diffusion behavior of STIM1 in
resting cells with depleted Ca2+ stores observed by Wu, Covington, and
Lewis (Wu et al., 2014). As we observed longer time periods (30 s),
STIM monomers looked to behave sub-diffusively. When we looked at
STIM-Orai conjugates (OS1-OS4), their observed diffusion rate

Fig. 4. Simulation Environment. Red represents the ER-PM junction where blue
represents the local space surrounding the junction. Each box in the image represents
a 5 by 5 set of boxes within the simulation.
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through our model was noticeably different from their input diffusion
rates. At shorter periods of observed time (1–3 s), the conjugates
motion bordered sub-diffusive motion and at longer time periods (30 s)
all 4 conjugate forms behaved sub-diffusively. Next we calculated the
diffusion rates of individual molecules using an altered monte-carlo
technique (see Methods (O’Connor et al., 2011)). Our single molecule
diffusion rates (Table 2) of individual molecule types showed similar
mean and median rates of diffusion in comparison to the population
dynamics over a duration of three seconds (Table 1).

3.2. Post-stimulation complex configuration and diffusion

We considered 5 different ratios of STIM and Orai abundance
ranging from 2:1 to 20:1 STIM: Orai. We started STIM in the form of
monomers and ran 10 simulations for each STIM: Orai ratio for 30 s
post stimulation and depletion of calcium stores. At this point we
looked at the configuration of molecules, the observed the number of
STIM located at the ER-PM junction, and the estimated calcium
current based on the molecular configuration of the STIM and Orai
molecules. Our results showed that STIM became more highly bound to
Orai in lower ratios of STIM: Orai (2:1, 5:1), but the Orai/STIM
complexes stayed in configurations with less STIM (OS1, OS2). With
higher ratios of STIM (8:1–20:1) more bound states were generated
(OS4) (Fig. 5A). The lower ratios of STIM to Orai showed higher
accumulation of STIM at the ER-PM junction (Fig. 5B). However, in
our model, accumulation was not directly proportional to predicted
calcium influx. If we accept the finding that Orai bound to more STIM
dimmers conduct more calcium (Kilch et al., 2013; Hoover and Lewis,
2011; Li et al., 2011) then due to the ability to reach bound Orai states
with a greater amount of bound STIM the optimal ratio in our
simulation, optimizing maximal channel opening based on estimated
relative calcium influx was roughly 8–10:1 STIM: Orai (Fig. 5C). These
results agreed with the optimal ratio of 7.5:1 predicted by Kilch et al.
model (Kilch et al., 2013). After 30 s of simulation, we allowed the
simulation to go on for an additional 30 s, but tracked the locations of
individual STIM molecules. We then calculated the STIM population

slope, p value, and diffusion rates for the ratios of 2:1, 5:1, 8:1, 10:1,
and 20:1 STIM: Orai for the next 1,3, and 30 s following the same
procedure as we used to calculate the population's observed diffusion
rates in the individual molecule diffusion analysis. Overall, we noticed
that at short durations of diffusion (1–3 s), STIM did not look to show
sub-diffusive motion (Table 3). However, the rate of STIM diffusion
significantly drops in comparison to freely moving STIM monomers
and dimers (Table 1). Furthermore, the rate of diffusion was lowest at a
ratio of 8:1 STIM: Orai, where STIM has the highest number of
maximally bound Orai. Our diffusion rates here were comparative to
the reduced diffusion rates observed by Wu, Covington, and Lewis, in
which they looked at STIM with and without the capability to bind to
the PM without the presence of Orai (Wu et al., 2014). We also looked
at individual molecule diffusion rates by calculating them in the same
way we did in the individual molecule diffusion analysis. Our calculated
median and mean diffusion rates of individual molecules showed that
STIM moved the slowest at ratios of 8–10:1(Table 2), fitting to the
observed population dynamics and the diffusion rates..

3.3. Performance characteristics

Our average run time for the STIM-Orai model for 30 simulated
seconds at a ratio of 2:1 STIM to Orai was 1242.78 ± 42.76 s using a
personal computer with an Intel® Core™ i7-4800MQ CPU @2.70 GHz
and 24 GB of DDR3 1600 ram. The time of the simulation was mainly
based on the motion of molecules and not the reaction between, as
there was roughly 20 motion events per reaction event and the timing
per event was similar regardless of type. The time per event increased
as the number of molecules, N, in the simulation increased at a rate of
N^1.08. This lead to roughly a 12-fold increase in simulation time with
a 10-fold increase of molecule numbers. Currently, the main limitation
is the ability to decrease bin size. The rate of molecule motion is
inversely related to the square of a bin's edge length. Thus, a 10-fold
decrease in bin edge length leads to roughly a 100-fold increase in the
number of motion events within our simulation. We did not find
evidence that the number of bins significantly altered the time per
event within our simulation, and by design, the number of reaction
events per simulation are independent of bin size.

4. Conclusions

We have created a novel form of IPS model that tracks individual
molecules (TIPS). With this novel concept we can now follow a
molecule even when it binds to other molecules, use its history to
change its behavior and compare its dynamics to that observed in
single molecule imaging experiments. Within the tracking, the popula-
tion dynamics are not altered at all and the simulation reacts as if
molecules were not being tracked. Due to this, the framework main-
tains the benefits of an IPS model while adding the benefit of being able
to analyze individual molecule motion and interaction. However, this
tracking comes at the cost of computation time. To save computation

Table 2
Single molecule diffusion analysisa.

Species Mean D Median D STIM: Orai Ratio Mean D Median D

SF 0.110 0.109 2:1 0.045 0.045
SD 0.055 0.056 5:1 0.038 0.037
OS1 0.027 0.027 8:1 0.036 0.036
OS2 0.018 0.018 10:1 0.035 0.031
OS3 0.013 0.013 20:1 0.043 0.046
OS4 0.011 0.011

b The mean and median observed diffusion rates of individual STIM molecule. The
species correspond to the individual molecule diffusion analysis when these species act
alone. STIM: Orai correspond to the full complement of interactions 30 s post-
stimulation under varying ratios of STIM: Orai.

Table 1
Population diffusion analysis of individual molecule typesa.

1 Step 10 Steps (1 s) 30 Steps (3 s) 300 Steps (30 s)

Given D D Slope Sub-diffusive D Slope Sub-diffusive D Slope Sub-diffusive D

SF 0.116 0.116 0.999 No 0.113 0.983 No 0.110 0.858 Yes 0.098
SD 0.058 0.058 1.014 No 0.057 0.997 No 0.056 0.933 No 0.052
OS1 0.035 0.030 0.935 No 0.027 0.853 Yes 0.024 0.529 Yes 0.020
OS2 0.022 0.020 0.911 No 0.018 0.898 No 0.017 0.623 Yes 0.015
OS3 0.016 0.014 0.893 No 0.013 0.910 No 0.014 0.681 Yes 0.012
OS4 0.013 0.011 0.830 No 0.008 0.879 No 0.009 0.758 Yes 0.009

a
D-The observed diffusion observed following 1,10, 30 and 300 time steps. Slope - the slope of the weighted least sum of squared linear fit of the natural logarithm of the displacement

squared over the natural logarithm of time. Sub-Diffusive - Slope is significantly less than 0.9 by a T-test.
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time we allow tracking of only populations of interest and the ability to
switch on and off the tracking of different molecule populations.
Furthermore, we provide a way to add individualized reaction/motion
rates, environmental factors, and history to this modeling framework
(Fig. 6), allowing for the framework to fit a plethora of biological
systems..

We applied our novel modeling framework to the tracking of STIM
in a STIM/Orai iteration model. When we looked at diffusion, STIM
monomers and dimers appeared to move diffusively near their input
diffusion rate, while conjugates appeared to have sub-diffusive move-
ments with a decreased diffusion rate. However, this was not due to
some directed motion or alterations within the molecules/complexes

themselves, but solely the result of being restricted to the boundary of
the ER-PM junction. The combination of the boundary of the diffusion
trap and the decrease in diffusion due to the formation of STIM-Orai
conjugates decreased the population of STIM motion significantly
enough to account fully for the observed differences of STIM motion
pre and post ER calcium store release. Our model also allowed us to
estimate the optimal ratio of STIM and Orai that would lead to
maximal calcium influx. We observed that although higher Orai
expression caused STIM to have a higher accumulation, this did not
translate directly to higher calcium influx, as the channels may also be
in less open states. Furthermore, too low levels of Orai expression lead
to a shortage of Orai, which prevented calcium influx as well.

Fig. 5. A.The configuration of Orai conjugates after 30 s for each simulated STIM:Orai ratio. B. The number of STIM present after 30 s at the ER-PM junction. The red dotted line
represents the expected number of STIM that would be present without any diffusive trap mechanisms. C. The calcium current relative to the maximal current of an individual channel
based on Orai states after 30 s of simulation by the formula Icrac=0.001*OS1+0.025*OS2+0.125*OS3+OS4 [2]. Bars represent standard deviation.

Table 3
Population diffusion analysis of STIM at different times beyond 30 s post stimulationa.

Ratio (S: O) 1 s 3 s 30 s

Slope Sub-diffusive D Slope Sub-diffusive D Slope Sub-diffusive D

2:1 0.986 No 0.047 0.956 No 0.044 0.824 Yes 0.040
5:1 0.956 No 0.039 0.955 No 0.039 0.780 Yes 0.033
8:1 0.935 No 0.037 0.903 No 0.035 0.794 Yes 0.032
10:1 0.977 No 0.041 0.956 No 0.040 0.785 Yes 0.034
20:1 0.951 No 0.045 0.928 No 0.043 0.845 Yes 0.041

a Diffusion is for all STIM molecules regardless of their conformation.

Fig. 6. History Simulation Results. The order in which immune cells escape to bin 4 was recorded for populations where the binding distribution was set by C equal to 1, 0.1, and 0.01
(subplots from left to right). A Pearson correlation and the corresponding p value were determined for the correlation of binding rates and escape orders. R values were 0.03, −0.25, and
−0.60 with p values of p > 0.75, p < 0.05, and p < 1e−10 respectfully. Each x in the figure represents an individual agent's escape order and binding rate. The red line is a least sum of
squared fit of the data. This model shows that under certain conditions the ability to record history and apply it back into a simulation could drastically alter the outcome of a simulation.
When C=1, the binding of immune cells to anitgen within the simulation happened much more rapidly. Most cells had a similar history of sufficient binding, making agents with different
binding rates behave similarly. In a population with low binding rates (compared to the speed of motion) distinctions of binding rates became more meaningful in terms of thei
individual cells history. Those cell's with a high binding rate interacted with more antigens and passed the barrier first.
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Therefore, in agreement with previous estimates (Kilch et al., 2013), we
found that there is an optimal median range of STIM: Orai expression
at a ratio of around 8:1 that should maximize calcium influx into the
cell.
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