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Abstract

The six complementarity determining regions (CDRs) of the T cell receptor (TCR) form multiple
contacts with cognate peptide and major histocompatibility complex, thus determining antigen
specificity. However, the importance of contacts between the CDRs themselves remains poorly
understood. With a systematic study of over 200 unique TCR structures, we identify consistent
intra and inter-chain CDR contact zones. We hypothesise that these interactions may restrict
TCRα/TCRβ pairing within epitope-specific repertoires. Indeed, we show that the sequences of
paired TCRα and TCRβ are not independent within the repertoires of TCRs specific for most
epitopes examined. We show that this sequence restriction can be quantified using a mutual
information framework, can be learnt by co-evolution models without using a training set of
known pairs and allows de novo predictions of TCRα/TCRβ pairing.

Introduction

The αβ T cell receptor (TCR) is a heterodimeric membrane protein which recognises peptides
bound to major histocompatibility complex (MHC) molecules (pMHC). Each chain in the dimer
is generated by a process of somatic recombination between V, J and (for TCRβ) D genes,
which generates an enormous diversity of TCR sequences (Davis & Bjorkman, 1988; Keşmir et
al., 2000; Mora & Walczak, 2019). The complementarity-determining regions (CDRs or CDR1,
CDR2 and CDR3) are the most variable region of each TCR chain, and make contact with the
cognate pMHC. CDR1 and CDR2 are encoded by the germline V gene, while CDR3 contains
the recombination junctions between V, J and D genes and is consequently the most diverse
(Schwartz & Hershberg, 2013). TCRs have a conserved docking mode on pMHC, with CDR3
making the most contacts with the peptide, whilst CDR1 and CDR2 mostly contact the MHC
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(Szeto et al., 2020; Milighetti et al., 2021). Notably, thousands of TCRs of different sequence
can bind to the same pMHC (Dash et al., 2017; Glanville et al., 2017) and a single TCR may
also bind to many pMHCs (Sewell, 2012).

Despite the heterodimeric nature of the receptor, and the evident contribution of both chains
to binding (Szeto et al., 2020; Milighetti et al., 2021), most studies consider the TCRα and β

sequences independently. Therefore, the extent to which TCR diversity is constrained by TCRαβ
interactions remains unclear. At a whole repertoire level, only very weak or no constraints on
pairing of TCRα and TCRβ sequences have been reported (Dupic et al., 2019; Yu et al., 2019;
Shcherbinin et al., 2020). The few studies of TCRα and TCRβ pairing within a set of TCRs
which all share the same pMHC specificity do not provide a consistent picture. Shcherbinin et
al., 2020 detected no constraints on TCRαβ pairing in PBMCs or in epitope-specific repertoires,
but showed that the residues at the α/β interface can affect the relative orientation of the two
TCR chains. However, paired TCRαβ have been shown to carry more information about epitope
specificity than each chain independently (Carter et al., 2019; Springer et al., 2021; Mayer &
Callan, 2023; Henderson et al., 2024). Experimental studies have also shown that interactions
between CDR loops might be important for epitope specificity. For instance, McBeth et al.,
2008 showed that residues in the CDR3s comprise over 30% of the α/β interface, and affect
the inter-domain angle between the two TCR chains and therefore pMHC binding. Therefore,
whilst there are few or no constraints on which TCRα can pair with which TCRβ at a protein-
folding level, thymic and post-thymic antigen selection may restrict α/β pairing. Moreover,
CDR1 and CDR2 may also contribute to antigen binding by directing loop conformations, as
single mutations in these loops can lead to loss of antigen binding (Gras et al., 2010), and the
effect of mutation is dependent on the CDR3 context (Stadinski et al., 2014). Overall, these
studies suggest that interactions between the CDR loops influence antigen binding. Importantly,
these interactions may impact affinity for antigen or TCR cross-reactivity, and may therefore
constitute an important consideration in the design and optimisation of TCR-engineered T cells
(Campillo-Davo et al., 2020; Baulu et al., 2023) or soluble TCRs (Robinson et al., 2021) for
therapeutic applications. Indeed, it is known that amino acids at the interface between TCRα
and TCRβ can modulate expression and stability of transduced TCRs (Thomas et al., 2019),
but their impact on TCR affinity and specificity remains to be resolved.

We hypothesise that, since the TCR binding surface is formed by all 6 loops coming together,
a change in any one of the loops may require compensatory changes in the other loops for
antigen binding to be preserved. To explore this hypothesis, we first systematically document
the interactions that the hypervariable loops make with each other. We then quantify the
constraint imposed by chain pairing and V gene selection by sequence similarity and mutual
information. Finally, we show that the TCRαβ pairing signal within epitope-specific repertoires
can be learnt by co-evolution based models.
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Methods

Analysis of existing crystal structures

A list of existing crystal structures for TCRs and TCR-pMHC complexes was obtained from
The Structural T-Cell Receptor Database (STCRDab, Leem et al., 2018, downloaded on 27th

February 2023). The dataset was curated to include only αβTCRs, either unbound or bound
to class I or class II MHC. Both mouse and human TCRs were included. Structures annotated
as bound for which the IMGT-renumbered file available from STCRDab had missing epitope
information were removed, as well as epitopes with special groups, structures that dock with
reverse polarity and TCRs binding superantigens and enterotoxins. The complete set included
529 unique TCR structures. The IMGT-renumbered sequence was then extracted from each
TCR, and TCRs with identical sequences for both TCRα and TCRβ chains were grouped
together. This further reduced the set to 214 unique receptors.

Structures were visualised using Pymol Open Source v2.5.0 (Schrödinger, LLC, 2015). Intra-
chain and inter-chain distances between Cα along the chains were calculated using the BioPDB
package in Python v3.11 (Hamelryck & Manderick, 2003).

Paired-chain datasets

The entire VDJDb database (Goncharov et al., 2022) was exported on 3rd February 2023. It
was refined to only include TCRs for which both TCRα and TCRβ chains are available, and to
include unique TCR-epitope pairs. All epitopes for which fewer than 100 or more than 10,000
sequences are available were removed from the set. The final set of sequences was used for all
analysis as described in the main text (Table S1).

Pre-processed data from Tanno et al., 2020 was obtained from the authors, and further
processed as in Mayer and Callan, 2023. The clonotypes from sample A1, sorted naïve cells
were used as a control of unselected repertoire.

stitchr (Heather et al., 2022) was used to obtain full chain sequences for each V/CDR3/J
annotation for both mouse and human TCRs, and ANARCI (Dunbar & Deane, 2016) was
used to obtain CDR3 sequences from each chain, renumbered to include standard IMGT gaps
(Lefranc et al., 2003). To ensure that CDR3 sequences were all the same length for mutual
information calculations, a length of 19 residues was enforced. Sequences longer than 19 residues
were discarded (Figure S1), corresponding to < 1% (67 of 9852) of all CDR3αβ. Where the
sequences were shorter than 19, additional gaps were added at position L

2 (where L is the length
of the CDR3 sequence) when calculating mutual information.

Sequence clustering based on triplet similarity

Sequence similarity between CDR3s was assessed by normalised triplet similarity as previ-
ously described (Joshi et al., 2019). Briefly, each CDR3 is decomposed into sets of overlap-
ping triplets. The number of triplets shared between two CDR3s is counted and normalised
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by
√
(L1 − 1)(L2 − 1), where L1 and L2 are the lengths of the two CDR3s. Triplet simi-

larity is calculated by using the stringdot function (norm = TRUE) of the kernlab package
(Karatzoglou et al., 2004). The similarity function is called in Python by using package rpy2
(https://rpy2.github.io/) and networks are plotted using python-igraph (https://python.igraph.
org/en/stable/, Csárdi & Nepusz, 2006).

Triplet similarity was calculated on CDR3 sequences which did not include gaps. Sequence
similarity graphs were defined by thresholding triplet similarity at a value of 0.76 and 0.72 for
α and β respectively. The thresholds were set such that 99.99% of pairwise distances between
CDR3 sequences not recognising the same epitope are below the threshold.

Calculating mutual information between TCR regions

To quantify how much restriction one region of the TCR poses on another, we calculated the
Mutual Information (MI) between different regions. MI is a statistical measure of the dependence
of two random variables, i.e. of how much information each variable carries about the other.
The MI between two regions where variability is moderate, such as V or J genes, can readily
be estimated by using the observed frequencies of each gene in the set, together with their
observed frequencies of co-occurrence. However, estimating the MI between one such region and
a CDR3 sequence, or between two CDR3 sequences, is not as straight-forward. Indeed, most
sequences occur only once (Table S1) and the data is thus insufficient to estimate the entropy
of CDR3 sequences as a whole (and thus the MI involving them). To circumvent this issue, we
focused on pairwise approximations of the MI involving CDR3 sequences, where the amino acid
sequence of the CDR3 region is considered one residue at a time. The MI between a region of
moderate variability and each single residue position of the CDR3 region was calculated, and
then summed to obtain a pairwise approximation of the total MI between these two regions.
This is an approach that has been successfully used to study protein-protein interactions and
co-evolution (Dunn et al., 2008; Skerker et al., 2008; Bitbol, 2018; for an alternative approach
using unbiased estimators for Renyi-Simpson entropies see Tiffeau-Mayer, 2023 and Henderson
et al., 2024). Concretely, the MI between a moderately variable region X and a CDR3 sequence
S was approximated by:

I(X;S) =

L∑
p=1

∑
r∈R

∑
x∈ΩX

fX,p(x, r) log

(
fX,p(x, r)

fX(x)fp(r)

)
, (1)

where f denotes a frequency observed in the data, L is the length of the CDR3 amino acid
sequence of interest (we enforced L = 19 as described above), r is a residue at position p in
sequence S, R is the set of possible residues (i.e. the 20 amino acids plus a character for a gap in
alignment), and X is the random variable describing the moderately variable region of interest
(e.g. the V gene), taking values x in an ensemble ΩX . Similarly, a pairwise approximation of
the MI between two CDR3 regions T and S was calculated by summing over all pairs of residue
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positions involving one position in each of these two regions:

I(T ;S) =
L∑

q=1

L∑
p=1

∑
r∈R

∑
w∈R

fq,p(w, r) log

(
fq,p(w, r)

fq(w)fp(r)

)
, (2)

where w is a residue at position q in sequence T (while r is a residue at position p in sequence
S, as before).

Since plug-in estimates of MI are biased for small sample sizes (Nemenman et al., 2002;
Archer et al., 2014), the ‘real’ value of the MI was extrapolated by taking sequential subsamples
of size N [25, 35, 50, 80, 100, 150, 200, 300, 500, 1000, 1500, 2000, 2500, 3000, 5000, 10000] until
sample size was reached. A regression line was then fit to the MI versus 1/N at each subsample
and the y-intercept was then used as the MI estimate (limN→∞) (Strong et al., 1998; Panzeri
et al., 2007). The procedure was repeated for both the real set and a shuffled version of the
same set (where one variable is kept constant, whilst the second variable is randomly shuffled, so
that the background entropy remains the same but the relationship between the two variables is
broken), to control for background, given the finite sample size. Each subsampling was repeated
10 times. Figure S2 shows the estimation for epitope GLCTLVAML as an example.

Since the CDR3 sequences were padded to obtain the alignment needed to calculate MI, we
evaluated the effect of padding the sequences in the middle compared to adding padding at the
end (Figure S3). Overall, the values were well correlated between the two methods (Spearman
ρ ≥ 0.95), with the exception of Ja-CDR3a and Jb-CDR3b, were the correlation was less strong.
Indeed, the J gene influences the sequence of the C terminal of the CDR3, therefore a change
in alignment in this region changes the estimated MI between the two.

MI was calculated using scikit-learn v1.1.3 (Pedregosa et al., 2012). To reduce the diversity
in V genes and J genes, tidytcells v1.6.0 (Nagano & Chain, 2023) was used to standardise to
the gene level, removing allele information.

Calculation of effective set size

We define effective set size as the number of distinct sequences present in a repertoire, accounting
for repeated or similar sequences. It is calculated as in Weigt et al., 2009 and Bitbol et al., 2016.
Briefly, for each sequence (S) in a set of size N the number of sequence neighbours within a
similarity threshold are counted (mS). S is then given a weight wS = 1

mS+1 . The total effective
set size can finally be calculated as:

Neff =
N∑
S∈1

wS =
N∑
S∈1

1

mS + 1
(3)

If all sequences are distinct and have no neighbours, Neff = N , whilst if all sequences are
neighbours of all other sequences Neff = 1. The diversity is calculated by Hamming distance on
the padded sequences. The effective set size Neff is then normalised by total repertoire size N
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Epitope PDB code SASA Reference

ASNENMETM 4HUX 311 Å2 Valkenburg et al., 2013
CINGVCWTV 3MRG 264 Å2 Reiser et al., 2014
ELAGIGILTV 1JF1 329 Å2 Sliz et al., 2001
GILGFVFTL 2VLL 259 Å2 Ishizuka et al., 2008
GLCTLVAML 3MRE 341 Å2 Reiser et al., 2014
LLWNGPMAV 5N6B 307 Å2 Bovay et al., 2018
LSLRNPILV 3BUY 308 Å2 La Gruta et al., 2008
NLVPMVATV 3GSO 375 Å2 Gras et al., 2009
RAKFKQLL 3SPV 243 Å2 To be published

SSLENFRAYV 1WBY 464 Å2 Meijers et al., 2005
SSYRRPVGI 1WBZ 331 Å2 Meijers et al., 2005
YLQPRTFLL 7N6D 460 Å2 Chaurasia et al., 2021
SPRWYFYYL 7LGD 436 Å2 Lineburg et al., 2021

Table 1: List of epitopes for which a PDB structure is available and calculated
solvent-accessible surface area.

for comparison across repertoires. The effective set size was not correlated to total repertoire
size (Figure S4).

Calculation of peptide solvent-accessible surface area

For the epitopes analysed, we retrieved the crystal structures of pMHC complexes from the
Protein DataBank (PDB), when available. Solvent-accessible surface area (SASA) for each epi-
tope was calculated using Pymol Open Source v2.5.0 (Schrödinger, LLC, 2015) using command
get_area on the peptide chain with dot_solvent 1 and solvent radius 1.4 Å on a representative
structure for each epitope (Table 1).

Mutual information iterative pairing algorithm (MI-IPA)

The mutual information-based iterative pairing algorithm (MI-IPA) was described in Bitbol,
2018. Briefly, the algorithm aims to correctly pair interacting proteins from two input lists
based on their amino acid sequences. It does so by approximately maximising the co-evolution
signal measured by mutual information. We adapted the method to pair a set of unpaired
TCRα/β sequences and implemented it in Python v3.11.0. Correct pairings were known but
blinded to the algorithm.

The MI-IPA is run on each epitope-specific repertoire from VDJDb, without using a training
set of known pairs (as would be the case if no information about pairing was available) and
inputting the CDR3 sequences only. For epitopes that have > 1000 sequences, 5 subsamples of
700 sequences were generated and paired, to reduce computational time. The original imple-
mentation of the MI-IPA used species to reduce the combinatorial number of assignments to be
evaluated. As species are not available in this case, we used study and individual information
as available from VDJDb as a substitute. As repeats are present both in the TCRα and TCRβ,
randomness was added into the model at the assignment stage. To account for this, as well as
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the influence of the initial random pairing, we ran the model 10 times in each condition.

Parameters θ (sequence diversity threshold) and λ (pseudocount) were defined as in Bitbol,
2018 and used to correct the frequency calculation for MI estimation. Step size and confidence
calculation were also optimised for the dataset. We compared the Hungarian scoring method,
a greedy assignment based on confidence calculation, and a ‘no confidence’ scenario, where the
greedy assignment is performed directly on the scores assigned to each pair, without calculating a
confidence score. These parameters are optimised on epitopes GLCTLVAML and YLQPRTFLL
(Figure S5). We chose to run the MI-IPA with diversity threshold θ = 0.6, pseudocount λ = 0.6,
step size of 6 sequences and no confidence calculation. Equivalent settings but with λ = 1 were
used as a negative control yielding the chance expectation (as λ = 1 prevents the algorithm from
learning).

Graph alignment (GA) algorithm

The graph alignment algorithm (GA) aims to align two sequence similarity networks built on
the lists of sequences to be paired (Bradde et al., 2010). First, all pairwise α − α and β − β

CDR3 distances in each input list are calculated. The distances are then used to calculate the
two similarity networks and the generated graphs are aligned by trying to maximise the number
of overlapping edges. Gandarilla-Pérez et al., 2023 recently published an implementation of the
GA, with code freely available at https://github.com/carlosgandarilla/GA-IPA. The published
code was retrieved and integrated in our pipeline. No amendments were made to the code that
performs the alignment. To allow integration between the GA, which was coded in Julia v1.8.5,
and the existing Python v3.11.0 pipeline we used PyJulia v0.6.0 (https://pyjulia.readthedocs.
io/en/latest/).

Four different distance measures were used: (1) Levenshtein (or edit) distance, (2) Weighted
Levenshtein distance (where substitutions are weighted 1 and gaps are weighted 1 + ln(4)),
(3) Triplet distance (calculated as 1-triplet similarity, as described above), (4) TCRdist (Dash
et al., 2017) calculated on the CDR3 sequence only. Levenshtein and weighted Levenshtein
distance are implemented in rapidfuzz (https://pypi.org/project/rapidfuzz/ Bachmann, 2024),
whilst TCRdist is calculated using the implementation available in package pwseqdist (https:
//github.com/agartland/pwseqdist), using the parameters specified within tcrdist3 (https://
tcrdist3.readthedocs.io/en/latest/, Mayer-Blackwell et al., 2021).

As for the MI-IPA, the GA was run on each epitope separately. Epitopes with > 1000

sequences were subsampled 5 times to 700 sequences to reduce computational time. The same
two epitopes as for MI-IPA, GLCTLVAML and YLQPRTFLL, were used to optimise the distance
metric and the number of neighbours (k, defined as in the original method) to achieve the best
pairing (Figure S6). The GA was run using Levenshtein distance and k = 20.

Combining GA and MI-IPA (GA+MI-IPA)

We combined the GA and MI-IPA as proposed by Gandarilla-Pérez et al., 2023. In the original
implementation, the GA was used to calculate a first pairing for the sequences of interest. The
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stable assignments (i.e. the pairs that were consistently assigned over many iterations of the
GA) were then used as a golden set for the MI-IPA (i.e. a training set of pairs that are used
to initialise the MI-IPA and kept as they are throughout the IPA). Here, we explored three
different ways of combining GA with MI-IPA:

(1) the most stable pairs (selected ≥ 95% of the time, or the top 5 pairs, whichever is largest)
from the GA are used as a golden set for the MI-IPA and removed from the set of pairs to
be paired by the MI-IPA (as in Gandarilla-Pérez et al., 2023);

(2) the most stable pairs (selected ≥ 95% of the time, or the top 5 pairs, whichever is largest)
from the GA are used as a golden set for the MI-IPA but they are not removed from the set
of pairs that the MI-IPA tries to assign. This allows the MI-IPA to correct the pairs in the
final assignments;

(3) the complete consensus assignment from the GA (i.e. the TCRβ that is most often assigned
for each TCRα across 100 repeats of the GA) is used as an input training set to the MI-IPA,
but all α and all β are also available for re-pairing by the MI-IPA.

Note that when multiple β are chosen the same number of times for an α in the GA, the β

included in the stable assignment is chosen at random. The final assignments for all pairs are
then extracted and evaluated against the known pairs.

As for the MI-IPA and GA, also the GA+MI-IPA was run on each epitope separately, using
5 subsamples of 700 sequences for epitopes with > 1000 sequences. Epitopes GLCTLVAML and
YLQPRTFLL were used to find the optimal combination of GA+MI-IPA (Figure S7). We chose
to run the GA+MI-IPA with the combination regime described in (2) above.

Calculation of precision

To quantitatively compare pairing algorithms, we calculated the proportion of predicted pairs
that are correct (precision). Note that there are repeats in the α and β chain sets which
will influence this calculation (see example in Figure S8A, B). Importantly, the calculation of
precision takes into account information about which individual repertoire a TCR sequence is
found in. Therefore, a pair must be correct and must be found in the correct individual to be
called correctly assigned. For instance, if a pair belonging to individual A but not individual B
is predicted for individual B, it is marked as incorrect (Figure S8A, C).

Results

Interactions between CDR loops in existing TCR structures

To document the patterns of CDR interactions, we examined the TCR-pMHC crystal structures
available from the The Structural T-Cell Receptor Database (Leem et al., 2018, STCRDab).
Observation of 4 representative structures (Figure 1) shows that CDR loops form a continuous
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CDR2

CDR3

2IAL CDR3
CDR1

CDR2

CDR1

CDR2

CDR3

Figure 1: CDR loops come together to form the TCR binding site in four example
structures. Positioning of CDR loops of 4 representative TCR structures (2 recognise epitope
on class I MHC, 3QH3 and 3DX9; 2 recognise epitope on class II MHC, 6CPH and 2IAL). TCRα
chain is in shades of blue, TCRβ is in shades of red. CDR1, 2 and 3 (brighter colour) for each
chain are represented with spheres and annotated on the figure. Mesh shows the rest of the
TCR structure. On the right of each structure, the circle plot shows contacts between the CDR
loops (defined as Cα distance ≤ 10Å). Light blue: contacts between loops on TCRα; light red:
contacts between loops on TCRβ; purple: contacts between the two chains. 3QH3: Scott et al.,
2011, 3DX9: Archbold et al., 2009, 6CPH: Galperin et al., 2018, 2IAL: Deng et al., 2007.

contact surface that binds pMHC. Detailed examination of the structures suggested that there
are both intra- (between two residues on the same chain) and inter-chain (between one residue
on the α and one residue on the β chain) contacts (right panel for each structure).

To more systematically map the interactions between TCR residues, we first measured the
intra-chain distances between the Cα of each residue and the Cα on all other residues on the
same chain for the four example structures (Figure 2A and B for TCRα and β, respectively).
Consistently with Figure 1, we see extensive intra-chain contacts, especially between CDR1 and
CDR3 and CDR1 and CDR2, both in the TCRα and in the TCRβ chain. Remarkably, the
patterns are consistent across the four structures and in both chains. We extended this analysis
to 214 unique TCRs (Figure 2C, D - contact is defined as distance ≤ 10Å between the Cα on
the two residues; Duarte et al., 2010). The patterns observed in the 4 example structures are
generalisable: CDR1 forms extensive contacts with CDR3, and CDR2 in turn forms contacts
with CDR1. We also observe conserved contacts between the first half of CDR2 and the first
half of CDR3.

Having observed interactions between the CDRs within each chain, we asked whether in-
teractions can be observed between the CDRs in the two chains (inter-chain contacts). Figure
3A shows the inter-chain distances for the four TCRs in Figure 1. Again, the distance pat-
terns are conserved across the four TCRs, both in the conserved framework regions and in the
CDR loops. Specifically, framework region 2 (FR2), found between CDR1 and CDR2, makes
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A

B

214 receptors, TCR⍺

214 receptors, TCRβ

C

D

3QH3 6CPH

TCR⍺

3DX9 2IAL

3QH3 6CPH

TCRβ

3DX9 2IAL

Figure 2: Conserved intra-chain interactions are observed in TCR structures. A, B)
Intra-chain contact maps for the structures in Figure 1 for the TCR α and β chain, respectively.
The distance (Å, colour bar) is calculated between Cα at each residue. C, D) Intra-chain
contact maps were calculated for the TCR α and β chain (respectively) of 214 unique TCRs. A
contact was defined as distance between Cα ≤ 10Å. The heatmap shows the number of structures
that are found to make contact at each pair of positions. Only positions present in > 75% of
structures according to the IMGT numbering scheme are shown. Only the bottom half of each
distance matrix is shown as it is symmetrical across the diagonal. In each heatmap, the start
and end positions of CDR1, 2 and 3 are highlighted.
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conserved contacts with FR2 on the other chain, as well as contacts with the beginning and
end of the CDR3, where the CDR3 sequence is least variable (the diamond-shaped pattern).
We speculate these are conserved structural contacts that allow proper formation of the TCR
heterodimer. On top of these, inter-chain contacts are observed between CDR1 and 2 and the
CDR3 on the paired chain (CDR2β and CDR3α in all four structures; CDR2α to CDR3β in all
but 3QH3). Remarkably, we observe a high number of contacts between the two CDR3s, whilst
no contacts are observed between the germline loops across the two chains. Notably, the two
CDR3s form a X-shaped pattern: the interactions here involve the two more variable regions,
but no interactions are observed between the variable regions and the conserved segments on the
loop (the opposite of the diamond pattern above). We extended these observations to the whole
set of 214 unique TCRs (Figure 3B). Compared to the four selected examples, the contacts
between CDR2 and CDR3 across the two chains are not as conserved across structures. On
the other hand, the diamond-shaped pattern between FR2 and CDR3α/β contacts is conserved
across most structures, as is the X-shaped interaction between the CDR3s. Overall, these results
suggest that the CDR loops come into close proximity with one another to form the antigen
binding site. We thus hypothesise that binding interactions between these loops may stabilise
the conformation and hence specificity of the binding surface.

A footprint of inter-chain interactions on TCRα and β paired sequences

We reasoned that the observed intra- and inter-chain interactions should impose constraints
on the paired TCRαβ amino acid sequences recognising a given antigen. Specifically, within an
antigen-specific repertoire the sequence of one TCR chain should restrict the allowed residues on
the other chain. One testable prediction of this hypothesis is that a set of similar antigen-specific
TCRα should bind to a set of similar TCRβ, and vice versa. Furthermore, this constraint should
be specific to antigen-specific repertoires, and very low in a background repertoire.

To test this hypothesis, we retrieved paired-chain data from the VDJDb and analysed each
epitope-specific repertoire (Bagaev et al., 2020; Goncharov et al., 2022). We clustered all CDR3α
and all CDR3β sequences based on triplet similarity. Figure 4A shows clustering of CDR3α
and β for a single epitope (GLCTLVAML). Both chains show some clustering, but there is no
one-to-one relationship between clusters of α sequences and clusters of β sequences. However,
within a single cluster of CDR3α sequences, the similarity of the paired CDR3β is higher than
size-matched random subsamples of CDR3β sequences from that same repertoire (Figure 4B),
and similarly for CDR3β clusters. Notably, all but one α clusters (cluster 139) and 5 of 7
β clusters (clusters 0, 1, 6, 89 and 94) from epitope GLCTLVAML show higher similarity in
paired sequences compared to background (β cluster 5 shows a similar trend but does not reach
statistical significance). We extended the analysis to all available epitopes within the VDJDb
for which there are at least 100 paired αβ TCRs (Figure 4C and Figure S9). We restricted the
analysis to clusters of size 3 or greater. We detected no CDR3α clusters of size 3 or greater
in epitopes LLWNGPMAV, SSYRRPVGI and TTDPSFLGRY and no CDR3β clusters of size
3 or greater in epitopes RLRAEAQVK and SPRWYFYYL. Most epitopes showed increased
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Figure 3: Conserved inter-chain interactions are observed in TCR structures. A)
Inter-chain (TCRα to TCRβ) contact maps for the four structures in Figure 1. The distance
(Å, colour bar) is calculated between Cα at each residue along the two chains. B) Inter-chain
contact maps were calculated for 214 unique TCRs. A contact was defined as distance between
Cα ≤ 10Å. The heatmap shows the number of structures that are found to make contact at
each pair of positions. Only positions present in > 75% of structures according to the IMGT
numbering scheme are shown. In each heatmap, the start and end positions of CDR1, 2 and 3
along the sequence are highlighted.
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similarity in TCRα or β associated with clusters of the other chain (Figure S9). However, the
increase in sequence similarity was variable, ranging from epitope GLCTLVAML where there is
a 10-fold increase in median sequence similarity in CDR3α and a 100-fold increase in median
similarity in CDR3β to epitope AVFDRKSDAK where no signal is detected for either chain, and
the sequence similarity even decreases for CDR3β. The latter would suggest chain independence,
i.e. TCRs binding to this particular epitope are not constrained in the CDR3αβ pairing.

Clustering relies on selecting a fixed threshold to connect two sequences. This leads to cases
where no large clusters are detected. To address this limitation, we evaluated more generally
whether the pairwise similarity between two TCRα and their two paired TCRβ was correlated.
We grouped the pairwise similarities calculated on TCRα sequences into bins, and plotted
the similarity of the paired TCRβ sequences within each bin (Figure S10A and the reverse
correlation, exchanging α and β, in S10B). This analysis also shows correlation between the
similarity on the two chains for most epitopes. Overall, these results suggest that, within an
epitope-specific repertoire, similar TCRα chains tend to pair with TCRβ chains that are more
similar than random, i.e. TCRαβ pairing is constrained.

Quantifying the interaction between CDR loops sequences using mutual in-
formation

In order to generalise our analysis beyond distance metrics, we re-formulated the problem in the
context of information theory. We estimated the mutual information (MI) between TCRα and
β sequences, and between V or J genes and CDR3 sequences, using a pairwise approximation
and corrected for sample size and background distributions (see Methods and Figure S2). As
negative control for the antigen-specific analysis, we estimated the MIs for all TCRs in the
VDJDb (referred to as background), as well as for a single sample of sorted naïve T cells from
Tanno et al., 2020 (referred to as Tanno::A1::naïve). The former contains information about
the 22 epitopes under study pooled together (and might therefore have some residual epitope-
specific signal), whilst the latter should only depend on the biology of receptor formation and
thymic selection, without the influence of antigen selection.

Figure 5A shows the estimated MIs for each epitope. The only pairs of sequence ensembles
where MI reveals statistical dependence in the naïve set are intra-chain pairs between V or J
gene and CDR3 sequence (bottom right heatmap, top left and bottom right quadrant). These
signals are expected due to the overlap between V/J sequences and CDR3 sequence, as well
as the restrictions on CDR3 sequence imposed by V/J gene selection during V(D)J recombi-
nation. Most epitopes show some level of statistical dependence beyond the naïve repertoire,
with epitope AVFDRKSDAK again showing low to no signal. Some epitopes (ASNENMETM,
ATDALMTGF, GLCTLVAML, HGIRNASFI, KSKRTPMGF, SSPPMFRV and YLQPRTFLL)
show moderate levels of statistical dependence between CDR3β and all other TCR components
on both chains. The MIs for all epitopes are summarised in Figure 5B. The most marked
increase comparing background and epitope-specific repertoires is in the CDR3α-CDR3β MI,
but other inter-chain relationships (Vβ-CDR3α and Vα-CDR3β in particular), and some of the
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A B

C

Figure 4: Co-clustering of CDR3α and β sequences. A) Each circle is a unique CDR3
sequence (α in blue, β in red). Similar α sequences are linked by blue edges, similar β sequences
by red edges. Each α is linked to its paired β by a grey edge. The clusters analysed in B
are coloured in shades of blue (α clusters) or red (β clusters) and identified by a shaded area
around them. Each CDR3 sequence is represented only once, therefore the same CDR3β may
be linked to multiple α (and vice versa), if it is not unique in the epitope-specific repertoire.
B) Similarity of paired CDR3β when α are clustered (top, or vice versa - bottom) for the
clusters identified in A. For each cluster, all pairwise similarities between the paired sequences
are calculated (coloured boxplots). 100 equal-size random samples are taken as controls from
the epitope-specific repertoire (grey boxplots). Only clusters of size 3 or greater are included.
C) The analysis in B was repeated for 22 epitopes. Each dot represents the median for a cluster
of size 3 or greater. Median similarity was also calculated for 100 controls for each cluster (grey
boxes, random sequences drawn from the same epitope-specific repertoire). Columns are empty
when no clusters of size 3 or larger are found. The median of each boxplot is shown as a line.
P-values (one-tailed t-test, comparing real to control): * < 0.05; **<0.01; ***<0.0001.
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intra-chain relationships (Vβ-CDR3β and Vα-CDR3α in particular) are also higher in epitope-
specific repertoires.

To understand the statistical dependence between V gene and CDR3 in more detail, we ex-
amined the estimated intra-chain MI between the V gene and each CDR3 residue (Figure 6A).
As CDR3 positions 104 and 118 on both chains are constant, the MI is 0. Residues 105-107 on
CDR3α are strongly dependent on the V gene, which reflects the overlap between V region and
the start of the CDR3, and can be observed in both VDJDb and naïve background. A similar
pattern can be observed with the first few residues on the CDR3β. However, we observed sta-
tistical dependence between the V gene and the central residues of the CDR3 for most epitopes,
as well as the VDJDb background. In contrast, no statistical dependence was observed for
these positions in the naïve repertoire (bottom row of the heatmap). Antigen-dependent TCR
selection therefore commonly induces statistical dependence between the CDR3 sequence and V
gene, which we speculate may reflect the observed structural interactions between the V region
and the CDR3 region (Figure 2).

Finally, we examined the MI between the CDR3α and CDR3β (Figure 6B). Little or no MI
is detected in the background repertoires suggesting weak restriction of CDR3 pairing at the
repertoire level. In contrast, most epitopes show statistical dependence in inter-chain CDR3
interactions, with an epitope-specific signal pattern. As in all the previous analysis, epitope
AVFDRKSDAK shows very low signal. Antigen-dependent TCR selection therefore commonly
generates significant statistical dependence between the CDR3α and β sequences, which we
hypothesise reflects restrictions in chain pairing due to structural interactions.

Examining MI variation across epitopes

A striking feature of both the intra-chain and particularly the inter-chain statistical dependence
was the variability between epitopes, akin to what observed when clustering TCRs from different
epitopes (see for instance Dash et al., 2017), or estimating their repertoire diversity with unbiased
estimators (Tiffeau-Mayer, 2023; Henderson et al., 2024). Understanding the factors which drive
this epitope dependence may have important implications for our ability to predict antigen
specificity.

We first measured the correlation between estimated MI and epitope repertoire size, to check
that our results were not caused by finite size effects. Reassuringly, we did not detect a significant
correlation for most of the relationships investigated (Figures 7 and S11A).

Certain epitope-specific responses are characterised by usage of a specific public TCR chain
which pairs with different partner chains (see for instance Zhong et al., 2007; Pogorelyy et al.,
2022), or differing levels of sequence similarity (see for instance Dash et al., 2017). To evaluate
the impact of similar or public TCR chains in MI estimation, we looked at the correlation
between MI and the effective set size. We calculated the effective set size of CDR3α, CDR3β
and CDR3αβ in each repertoire. We set the threshold of similarity to be up to Hamming
distance 1 for CDR3α and CDR3β, and up to Hamming distance 2 for CDR3αβ (concatenated
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A

B

Figure 5: Mutual information between TCR components in epitope-specific reper-
toires. A) Mutual information (MI) was calculated between all different components of the
TCR (V genes, J genes, CDR3 sequences) for each epitope-specific repertoire. In each heatmap,
the top-left and bottom-right quadrants contain intra-chain MI (α in top-left and β in bottom-
right). The bottom-left quadrant shows the inter-chain MI. The MI was estimated for various
subsamples for each epitope, and an estimate correcting for finite size effects was found for both
the real set and a shuffle (Figure S2). The MI plotted here corresponds to the difference between
the estimated MI for real and shuffle. A pairwise approximation is used in cases involving CDR3
(see Methods). B) Summary of the plots in A. The x-axis is ordered according to the MI in
the naïve control repertoire (Tanno::A1::naïve), from largest to smallest (black circles joined by
a solid line). Each epitope is identified by a combination of colour and shape.
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V⍺
Vβ

B

A

Figure 6: Mutual information between CDR3 and associated V gene and CDR3α-
CDR3β. A) Mutual information (MI) between V genes and each residue position on the CDR3.
Top: Vα to CDR3α; bottom: Vβ to CDR3β. B) MI between each pairs of positions on CDR3α
and CDR3β. The MI was calculated with pairwise approximation, extrapolation and correction
for background (for both A and B, see Methods). IMGT positions between residues 111 and
112 are not shown as they are not present in most TCRs analysed.
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as a single sequence). We then correlated each of these measures with the MI for that repertoire
(Figure 7A and Figure S11B). We observe that repertoires dominated by a single sequence or
cluster of similar sequences (a smaller set size) tend to have more MI.

We also examined whether the MI may depend on the feature-ness of the epitope within
the MHC (i.e. how many features the peptide residues offer for the TCR to bind), which has
been proposed to correlate with repertoire diversity (Turner et al., 2005; Turner et al., 2006).
Structures of peptide-MHC for the same set of epitopes were downloaded where available and
the feature-ness of a peptide was approximated by the solvent-accessible surface area of the
peptide (SASA, Table 1). Epitopes that have a relatively featureless surface (low SASA), or
which are bulged out of the MHC (high SASA) tend to generate a less diverse TCR repertoires
(Turner et al., 2005; Turner et al., 2006). Therefore, we expect the most MI to be contained in
epitopes that are either very featured or featureless (very high or very low SASA). To test for
this, we determined whether a relationship between SASA and MI exists by fitting a parabola
with ordinary least squares (Figure 7B). No significant relationship was detected, but structures
are available for only 13 out of 22 studied epitopes, which limits the statistical power of the
analysis.

Using co-evolution methods for TCRαβ pairing

The correlations of sequence similarity and MI across chains (Figures 4 and 5) resemble those
of co-evolving protein families (De Juan et al., 2013). We therefore wondered whether we
could use methods developed for co-evolving proteins to select the most likely TCRβ partner
for each TCRα within epitope-specific repertoires, when the pairing information is withheld.
We adapted two methods: a MI-based method (MI-IPA, Bitbol, 2018) and a graph alignment
method (GA, Bradde et al., 2010), as well as a combination of the two (Gandarilla-Pérez et al.,
2023, GA+MI-IPA, ).

We optimised the MI-IPA and GA by comparing performance on two different epitopes,
GLCTLVAML (EBV) and YLQPRTFLL (SARS-CoV-2), both presented on HLA-A*02 (Figures
S5 and S6, respectively). These epitopes have comparable number of annotated TCRαβ in
VDJDb (345 and 333, respectively, Table S1), but GLCTLVAML shows a stronger MI signal
than YLQPRTFLL (Figure 5). We then ran the optimised models on all epitopes. To reduce
computational time, we subsampled epitopes with > 1000 TCRs to 5 subsamples of 700.

First, we ran the MI-IPA on each epitope-specific repertoire. The MI-IPA exploits the
residue-level signal that is available from TCRαβ pairs to perform the pairing. The results are
summarised in Figure 8. In 14/22 epitopes, the MI-IPA can perform significantly better than
random guessing (we consider it successful for epitopes GILGFVTL and RAKFKQLL but not
AVFDRKSDAK based on whether it is significant in at least 3/5 subsamples). As the model was
run 10 times, we explored whether the stability of the assignments between repeats could provide
a confidence score for each pair. Overall, for most epitopes the majority of pairs are not assigned
stably across the repeats (Figure S12A), but a few αβ are always paired together. Interestingly,
epitopes such as ATDALMFTGF and RLRAEQVK which show no signal of learning in Figure 8
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A
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Figure 7: Mutual information correlates to effective set size but not peptide solvent-
accessible area. A) Correlation of mutual information (MI) and effective set size. Effective
set size was calculated by grouping all sequences with Hamming distance of < 2 on each chain
and < 3 for the paired chains, normalised by total repertoire size (N). Correlation with N is also
shown as a control, and no significant correlation was found in this case. All correlations with
effective set size and N are shown in Figure S11. B) Correlation of MI and solvent-accessible
surface area (SASA) for the available epitopes (Table 1). Correlations were calculated by fitting
a linear regression. P-value for the F-test and R2 was calculated for each fit. Fits that have
p-value<0.05 are highlighted in red. The shaded area represents the 95% CI of the fit.
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Figure 8: Co-evolution based models perform better than random at pairing TCRαβ
in epitope-specific repertoires. Precision is calculated over 10 repeats of the MI-IPA or
GA+MI-IPA (cyan and magenta, respectively) or 100 repeats of the GA (orange) for all epitopes.
For epitopes with > 1000 sequences, 5 subsamples of 700 sequences are shown. The IPA is run
both with λ = 1 (chance expectation, black bars) and λ = 0.6 (cyan). The black crosses
correspond to the theoretical best performance, i.e. the MI-IPA initialised on all correct pairs
and run once to pair all sequences. One-sided Student’s t-test is calculated for each epitope
for the MI-IPA, GA or GA+MI-IPA using the alternative hypothesis that the model performs
better than chance expectation. P-values are indicated by asterisks in the corresponding colour:
***< 0.001; 0.001 ≤**< 0.01; 0.01 ≤*< 0.05.

also seem to have unstable assignments, whilst epitopes such as ASNENMETM and SSPPMFRV,
for which the MI-IPA can make predictions, show a large proportion of stable pairs. Notably,
stable pairs are enriched for correct pairs for all epitopes tested (Figure S12B). Thus stability
under repeat model building may be useful to assess the reliability of the pairing assignment
algorithm (as in Bitbol et al., 2016).

We then implemented the GA algorithm, which attempts to optimally align edges between
the two nearest neighbour graphs of TCRα and TCRβ sequences, thus exploiting the observed
correlation of sequence similarity (Figure S10). We ran the GA algorithm to pair TCRαβ from all
available epitope repertoires (Figure 8). Overall, the GA shows significantly better performance
than chance expectation in 19/22 epitopes. Some epitopes, such as LSLRNPILV, showed better
precision by using the GA algorithm, whilst for others the GA achieves similar performance to
the MI-IPA. Epitopes that perform well have more stable assignments than epitopes for which
the GA cannot achieve good performance (Figure S13A). Moreover, stable pairs are enriched
for correct pairs (Figure S13B).

Finally, we combined the two methods as suggested in Gandarilla-Pérez et al., 2023. Briefly,
stable pairs from the GA assignments provide the training set for the MI-IPA. We opted to
retain these sequences in the testing classification task, so as to allow the MI-IPA to correct any
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mistakes in the GA classification (Figure S7). The results for the GA+MI-IPA are shown in
Figure 8. The combination of the two methods can occasionally marginally improve on either
method alone. We then investigated how stable the selection of a CDR3β for each CDR3α is
in the GA+MI-IPA (Figure S14). Unlike the stability plots for MI-IPA and GA, the GA+MI-
IPA shows a larger proportion of stable pairs. We attribute this to the use of a training set in
the MI-IPA when combined to the GA as the trajectory of the MI-IPA is less random when a
training set is provided. Unfortunately, this has repercussions on the ability to use stability to
enrich for correct pairs: for epitopes such as ASNENMETM, GLCTLVAML or LSLRNPILV the
precision in the most stable pairs is similar to the overall precision (Figure S14B).

Overall, the pairing algorithms showed a modest but significant ability to identify true pairs
of αβ sequences. To understand whether the limitation was in the learning step (i.e. the way
the algorithm selects pairs does not allow it to find the optimal solution) or in the data (i.e. the
signal in the data is too low to achieve pairing), we calculated the theoretical best performance
for the MI-IPA. To achieve this, we initialised the MI-IPA with all correctly-paired αβ for each
epitope. This allows the MI-IPA to immediately see all the rules that govern the pairing at once
(the complete set of statistical dependencies). We then ran a single iteration of the MI-IPA to
pair all the available α/β from that epitope repertoire again. We could thus assess whether the
MI-IPA correctly pairs all available sequences knowing the pairing rules a priori (Figure 8). In
all epitopes, the pairing algorithms under-perform compared to the theoretical limit, suggesting
that the learning process is not able to extrapolate all the rules that can be learnt from these
pairs, i.e. it converges to a different solution. However, the theoretical maximum is well below 1
for all epitope repertoires, suggesting that the signal available from the data is limited, and can
recapitulate only some of the rules of TCRαβ pairing. We posit that dataset size and difficulty
in aligning these sequences may be some of the limiting factors in this approach.

Correlates of pairing performance and repertoire characteristics

We sought to understand which factors drive the large range in precision observed in Figure 8
for each model. The MI-IPA is a data-thirsty method, and the total size of the repertoire, as
well as the size of the individual repertoires can highly influence performance (Bitbol, 2018).
Indeed, larger individual repertoire sizes will make the task significantly harder for the pair-
ing algorithms, as more combinatorial pairs need to be evaluated. Moreover, the final result
might be influenced by the MI available in each epitope-specific repertoire (defined as in Fig-
ure 5). We therefore correlated MI-IPA performance (calculated on the consensus assignment
over 10 repeats, i.e. by taking the modal β for each α) with each of these factors (Figure 9A).
The theoretical maximal, but not the actual performance was inversely correlated to individual
repertoire size and total epitope repertoire size, and positively correlated to MI. These 3 vari-
ables together can explain over 50% of the variance observed across epitopes in the theoretical
best performance, and almost 30% in the learning scenario (multivariate linear regression, Table
S2).

To understand which factors influence GA performance, we correlated the performance of
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Figure 9: Correlation of model performance and repertoire characteristics. Caption
next page.
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Figure 9: Correlation of model performance and repertoire characteristics. (Caption
continued.) A) A linear regression was calculated to evaluate the effect of repertoire size (N),
largest individual repertoire size (Largest ID size) and total mutual information (Repertoire MI,
calculated as in Figure 5 between CDR3α and CDR3β) on the precision for MI-IPA (no learning:
[confidence = none; λ = 1.0; θ = 0.6]; learning: [confidence = none; λ = 0.6; θ = 0.6]; theoretical
best: [confidence = none; λ = 0.6; θ = 0.6; correct pairs as training set]). Subsamples from
large repertoires are included as an average, and the repertoire MI is calculated on the complete
sample. B) A linear regression was calculated to evaluate the effect of N, Largest ID size and
similarity network characteristics on the precision for GA. The graph characteristics measured
are: average degree of nodes, number of clusters of size ≥ 3 and proportion of sequences that do
not have any neighbours (singlets). These are calculated on the graph built by drawing edges
between sequences at Levenshtein distance < 3 on CDR3α and CDR3β separately. Subsamples
from large repertoires are included as an average, and the graph properties are calculated on
each subsample separately. C) A linear regression was calculated to evaluate the effect of N,
Largest ID size, Repertoire MI, number of stable GA pairs and proportion of the GA training
set that is correct (% correct in GA stable) on the precision for GA+MI-IPA. Subsamples from
large repertoires are included as an average, the repertoire MI is calculated on the complete
sample and the GA stability results are calculated for each subsample separately and averaged.
In each panel, the precision is calculated using the modal β for each α over multiple iterations of
the model. Since multiple CDR3β may be selected the same number of times for one CDR3α,
one is selected at random. To mitigate for variation, the mode selection is run 100 times and the
average precision is used. In each panel, the R2 for the regression is shown and the scatterplots
are red when p-value for the F-statistics of the regression is < 0.05. The solid line shows the
calculated regression and the shaded area the 95% confidence interval of the prediction.

the GA (calculated on the consensus assignment over 100 repeats) with repertoire size, largest
individual size, as well as characteristics describing the sequence similarity networks that can be
generated from each of these epitopes (calculated using pairwise Levenshtein distance, thresh-
old < 3). The results are shown in Figure 9B. Interestingly, performance correlates with the
properties of the sequence network: the more sequence clustering is observed (higher average
degree, smaller proportion of singlets), the better the GA is at predicting outcome. The model
built with these variables can explain almost 80% of the variance between epitopes (Table S3).

Finally, we looked at factors that might impact the performance of the GA+MI-IPA. As
for the MI-IPA, we calculated the effect of repertoire size, largest individual repertoire size and
repertoire MI. Moreover, we extracted the number of stable pairs from the GA and the percentage
of the GA stable set that is correct. We correlated these factors with both the precision, increase
in precision from using MI-IPA on its own, as well as the fold change between the precision of
the MI-IPA and the precision of the GA+MI-IPA, to see if we could explain why some epitopes
benefit from the initial GA step and some do not. Figure 9C shows the results for each variable
independently. The number of stable pairs in the GA is significantly correlated with precision of
the GA+MI-IPA. Interestingly, none of these factors can explain why certain epitopes improve
on the MI-IPA and others do not. When combining these variables in a multivariate regression,
they can explain over 80% of the observed variance in precision of the GA+MI-IPA, but they
are unable to explain the variance in improvement compared to MI-IPA alone (Table S4).
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Discussion

We report the most systematic analysis to date of interactions between TCR CDR sequences.
We observed conserved intra- and inter-chain contacts between the CDRs from over 200 unique
TCRs. Specifically, we observed intra-chain interactions between CDR1 and CDR3, CDR1
and CDR2, and CDR2 and CDR3 on each chain. We further observed inter-chain interactions
between the conserved framework region 2 on each chain, and at the interface between the two
hypervariable CDR3s. We did not detect conserved interactions between the germline-encoded
loops on the two chains, consistent with the idea that there are no significant constraints in
TRAV/TRBV pairing at the repertoire level (Dupic et al., 2019; Shcherbinin et al., 2020). The
observed intra- and inter-chain interactions suggest that the TCR binding site for antigen is
shaped by interactions between the six CDR loops.

We thus hypothesised that if the intra- and inter-chain contacts are important for shaping
epitope specificity, the sequences of the two TCR chains would restrict each other’s diversity
in the context of sets of TCRs with shared pMHC specificity. We found several strands of
evidence supporting this prediction. Firstly, using a measure of pairwise sequence similarity, we
find that epitope-specific TCRs with similar α sequences have paired β chains with restricted
sequence diversity. The reverse relationship also holds. Secondly, we can measure significant
MI between the V gene and the CDR3 sequences within an epitope-specific repertoire. This
observation is consistent with the idea that CDR1 and CDR2 interact with CDR3, although we
note that for this analysis we defined V genes categorically by their gene names, which loses
some sequence-level information. Thirdly, we detected consistent MI between the CDR3α and
the CDR3β sequences within sets of epitope-specific TCRs. Interestingly, the mutual restriction
seen between TCRα and β sequence diversity in the context of shared specificity is reminiscent of
the ‘light chain coherence’, recently described in antibodies (Jaffe et al., 2022). Our results differ
from those in Shcherbinin et al., 2020, as they did not find evidence for restriction of TCR chain
pairing even within epitope-specific repertoires. This discrepancy can likely be attributed to the
inclusion of the CDR3 sequence in our analysis. Indeed, this is consistent with recent results
showing that the CDR3α and CDR3β carry synergistic information about epitope binding,
greater than the synergy measured between Vα and Vβ genes (Henderson et al., 2024). All
three examples of αβ diversity restriction discussed above were consistent across most epitopes
tested. However, there was considerable variance in the interaction strength detected when
comparing TCRs binding different pMHCs, discussed in more detail below.

A key unsolved practical problem in the field of TCR repertoire analysis is the ability to
predict correct pairing from TCRα and TCRβ chains sequenced independently. A method
able to make such a prediction would allow to quickly find candidates for, for example, TCR-
engineered T cell therapies from bulk TCR sequencing of patient samples, thus expediting the
existing experimental pipelines. We reasoned that the mutual sequence constraints imposed
on TCRαβ are somewhat analogous to constraints found between co-evolving protein families,
which share similarity in their phylogenetic trees, and show sequence correlations at the residue
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level (Korber et al., 1993; Fryxell, 1996; Dunn et al., 2008; De Juan et al., 2013; Ochoa & Pazos,
2014). A number of approaches have already been explored to predict pairing between co-
evolving interacting protein families. To reframe the TCRαβ pairing problem as a co-evolution
problem, we consider the multiple TCRα and TCRβ chains which bind to the same epitope as
‘paralogs’ from interacting protein families, while similar TCRα (or β) sequences that bind the
same epitope but are found in different individuals are ‘orthologs’. We adapted three co-evolution
based methods to try and predict TCRαβ pairing (Bradde et al., 2010; Bitbol, 2018; Gandarilla-
Pérez et al., 2023). Importantly, we have applied these models in the simplest possible scenario:
by using lists of TCRα and TCRβ which have been previously annotated for a single epitope.
Except for the theoretical best scenario, a training set of know TCRαβ pairs was never provided
to the pairing algorithms, so that we could evaluate each model’s ability to make de novo
pairing predictions. We were able to detect a significant improvement in pairing performance
over random assignment in all epitopes we tested except three (ELAGIGILTV, RLRAEAQVK
and SPRWYFYYL) using at least one of the three methods. Consistent with this, previous
studies have suggested that the TCR recognition of epitope ELAGIGILTV is dominated by the
TCRα chain (Trautmann et al., 2002; Dietrich et al., 2003), and may be largely independent of
TCRβ.

The performance of the algorithms provides proof-of-principle that the MI detected between
TCRα and β CDR sequences can translate into pairing information. However, the performance
remains poor, precluding their current use for practical application in clinical settings. Two
technical improvements might be possible: a better integration of GA and MI-IPA and the
integration of TCRα and TCRβ abundance information. Some experiments combining the GA
and MI-IPA were carried out with scarce improvement on each method singularly. Future studies
may explore better ways to use the results from the GA to initialise the MI-IPA. On the other
hand, we might be able to boost performance by including information other than TCR sequence,
such as abundance. We expect chains that come from the same clone to have similar abundance
in the same sample, and vary across samples in a correlated manner. This information is readily
available from TCR sequencing experiments (see, for instance, Oakes et al., 2017). Therefore,
it might be possible to integrate this information to achieve better predictions.

The optimisation of the algorithms may provide performance gains. However, more fun-
damental factors may also limit performance. In particular, in the co-evolutionary context,
interacting proteins evolve over time, and thus existing examples presumably represent optimal
(or optimised) solutions to the interaction. In the TCR context, paired αβ do not co-evolve,
but rather get selected because they are available in the repertoire and are functional. As such,
these pairs may not represent the optimal solution to the interaction, and instead they may be a
functional (and likely sub-optimal) solution that was selected. Indeed, our set includes repeated
sequences in both the CDR3β and CDR3α, which suggests that multiple functional solutions
are possible for the same chain (Table S1).

Different epitopes show different levels of MI, different patterns of where most of the MI is
contained, and different performance of the pairing algorithms. We hypothesise that this vari-
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ance may be explained by both intrinsic and extrinsic features. Intrinsic features reflect physical
properties of the the TCR/pMHC complex (e.g. more or less contacts, binding constraints etc.).
For example, the feature-ness of a peptide can impact the diversity of the associated repertoire
(Turner et al., 2005; Turner et al., 2006). However, we were unable to detect any correlation
between feature-ness and MI. Extrinsic features include size of the epitope-specific repertoires,
as well as sequence publicity and similarity within a repertoire. We found significant correlations
between the effective set size and the MI of the repertoire: the smaller the effective set size, the
higher the MI. We speculate this is due to the presence of fewer, larger clusters, which allow us
to better recapitulate the binding rules for each in the MI. This is consistent with the positive
correlation between the average degree of the CDR3 similarity networks and the performance
of the GA algorithm. Overall, we still do not have a full understanding of the factors which de-
termine the relationship between TCRα and β interaction and pMHC. A much larger selection
of pMHC than the 22 examples available and studied here will need to be analysed to answer
these questions.

In conclusion, we identify extensive, and in some cases highly conserved interactions between
the CDR sequences which form the binding surface of a TCR. These interactions impose a
constraint on TCRαβ pairing in the context of antigen specific TCR sets. We provide some
initial indications of how this may be used to correctly pair α and β sequences when such
paring is not available experimentally. The interactions between CDRs also have fundamental
implications in the context of the biophysics of TCR binding. In particular, they may stabilise
the conformation of the CDR loops, and reduce their ability to move freely. In this way, the
interactions may reduce the entropy of the TCR prior to binding, and thus increase TCR affinity,
on-rate and specificity at the expense of reduced breadth. Further experiments to measure the
dynamics of TCR, before and after binding, will be required to validate these predictions. This
information will be an important factor in future design of TCR-based therapeutics.
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Supplementary material

Epitope Number
of entries

Unique
CDR3α

Unique
CDR3β

Number of
individuals

ASNENMETM 201 157 111 28
ATDALMTGF 125 99 111 1

AVFDRKSDAK 1699 1552 1584 7
subsample 0 700 661 670 7
subsample 1 700 663 671 6
subsample 2 700 657 662 5
subsample 3 700 653 679 6
subsample 4 700 657 672 6

CINGVCWTV 226 214 218 7
ELAGIGILTV 380 348 370 14
GILGFVFTL 1894 1082 980 56

subsample 0 700 477 442 48
subsample 1 700 487 460 50
subsample 2 700 488 427 50
subsample 3 700 464 436 50
subsample 4 700 475 423 44

GLCTLVAML 345 228 239 20
HGIRNASFI 243 187 180 13
IVTDFSVIK 704 526 517 7

KSKRTPMGF 103 85 70 1
LLWNGPMAV 235 202 220 2

LSLRNPILV 127 109 111 12
LTDEMIAQY 124 115 119 2
NLVPMVATV 357 305 318 48
RAKFKQLL 1200 649 650 3
subsample 0 700 411 407 3
subsample 1 700 417 405 3
subsample 2 700 410 411 3
subsample 3 700 402 420 3
subsample 4 700 419 406 3

RLRAEAQVK 412 389 394 4
SSLENFRAYV 350 240 286 19
SPRWYFYYL 175 169 174 10
SSPPMFRV 133 100 58 14

SSYRRPVGI 177 148 153 32
TTDPSFLGRY 242 231 232 1
YLQPRTFLL 333 284 304 10

Table S1: Summary of VDJDb set used for the pairing algorithms. For large epitopes
that were subsampled for pairing, composition of each subsample is shown.
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N Largest ID
size

Repertoire
MI (nats)

R2 R2
adj F-score

p-value

No-learning background:
confidence = none; λ = 1.0; θ = 0.6

0.1236
(*)

-0.0845 0.0140 0.232 0.104 0.180

Learning model:
confidence = none; λ = 0.6; θ = 0.6

0.1317 -0.1081
(*)

0.0445 0.294 0.177 0.092

Theoretical best:
confidence = none; λ = 0.6; θ = 0.6

-0.1362 -0.0789 0.0292 0.545 0.469 0.002

Table S2: Factors affecting MI-IPA performance. A multivariate linear regression was cal-
culated to evaluate the effect repertoire size (N), largest individual (Largest ID size) and total
mutual information (Repertoire MI, calculated as in Figure 5 between CDR3α and CDR3β) on
the precision. Subsamples from large repertoires are included as an average, and the repertoire
MI is calculated on the complete sample. Each independent variable was normalised by sub-
tracting the mean and dividing by the mean to make the derived coefficients more comparable
(xnorm = (x− x̄)/x̄). The R2 and adjusted R2 (R2

adj) for the regression are shown, as well as the
F-score p-value. P-values associated with each coefficient are shown as asterisks: ***< 0.001;
0.001 ≤**< 0.01; 0.01 ≤*< 0.05.

N Largest
ID size

Average degree
of node

Number of
large

clusters

Proportion
of singlets

R2 R2
adj F-score

p-value

GA:
distance=lev; k=20

-0.3507
(*)

-0.1282 α: 0.0608
β: 0.1062 (**)

α: 0.3761
β: 0.0414

α: 0.2471
β: -0.0251

0.799 0.675 0.002

Table S3: Factors affecting GA performance. A multivariate linear regression was calcu-
lated to evaluate the effect repertoire size (N), largest individual (Largest ID size) and similarity
network characteristics on the precision for each model. The graph characteristics measured are:
average degree of nodes, number of clusters of size ≥ 3 and proportion of sequences that do not
have any neighbours (singlets). These are calculated on the graph built by drawing edges be-
tween sequences at Levenshtein distance ≤ 3 on both CDR3α and CDR3β. Epitopes for which 5
subsamples are available are averaged across subsamples, and each of the metrics is calculated on
the specific subsample. Each independent variable was normalised by subtracting the mean and
dividing by the mean to make the derived coefficients more comparable (xnorm = (x − x̄)/x̄).
The R2 and adjusted R2 (R2

adj) for the regression are shown, as well as the F-score p-value.
P-values associated with each coefficient are shown as asterisks: ***< 0.001; 0.001 ≤**< 0.01;
0.01 ≤*< 0.05.
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N Largest
ID size

Repertoire
MI (nats)

Number
of stable
pairs in

GA

% correct
in GA
stable

R2 R2
adj F-score

p-value

GA+MI-IPA model precision:
distance=lev; k=20;
GA-thresh=0.95; re-pair=True

-0.0302 -0.0027 0.0447
(*)

0.0802
(***)

0.0520
(*)

0.833 0.780 10−5

precision increase from MI-IPA:
precision of GA+MI-IPA −
precision of MI-IPA

-0.0095 -0.0081 -0.0004 0.0010 0.0100 0.143 -0.125 0.748

precision ratio between GA+MI-
IPA and MI-IPA:
log2(

precision of GA+MI-IPA
precision of MI-IPA )

-0.2914 0.0458 0.1081 -0.0409 0.1188 0.060 -0.234 0.957

Table S4: Factors affecting GA+MI-IPA performance. A multivariate linear regression
was calculated to evaluate the effect repertoire size (N), largest individual (Largest ID size), total
mutual information (Repertoire MI, calculated as in Figure 5 between CDR3α and CDR3β),
number of stable GA pairs and proportion of the GA training set that is correct (% correct in
GA stable) on the precision. Each independent variable was normalised by subtracting the mean
and dividing by the mean to make the derived coefficients more comparable (xnorm = (x− x̄)/x̄).
The R2 and adjusted R2 (R2

adj) for the regression are shown, as well as the F-score p-value. P-
values associated with each coefficient are shown as asterisks: ***< 0.001; 0.001 ≤**< 0.01;
0.01 ≤*< 0.05.

Figure S1: Length of CDR3α and CDR3β sequences in VDJDb dataset. Distribution of
CDR3 lengths (without padding) in the α (left) and β (right) chains. The dotted line shows the
length threshold chosen as maximum allowed length, and the text indicates how many CDR3s
were removed and what percentage they correspond to.
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Figure S2: Estimation of mutual information for epitope GLCTLVAML. For each pair
of TCR components (indicated in the title of each plot), mutual information (MI) was calculated
at multiple subsamples for both the real set (red) and a shuffle (black). Each subsample was
repeated 10 times. A line was fit through the point and MI was estimated as the y-intercept for
both real set and shuffle.
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Figure S3: Comparison of estimated MI when different padding methods are used.
For each pair of variables, the comparison of the MI estimated on CDR3s with padding in the
middle (position L

2 where L is the length of the CDR3 sequence) or at the end of each sequence
is shown. The y = x diagonal is shown with a dashed line. Only pairs of variables including the
CDR3 are shown in the plot, as V and J MI estimation is not affected by the padding strategy.
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Figure S4: Correlation of repertoire size and effective set size. For each epitope, CDR3α,
CDR3β and CDR3αβ effective set size is correlated with total repertoire size (N). Effective set
size was calculated by grouping all sequences with Hamming distance of < 2 on each chain
or < 3 for the paired chains, normalised by N . Correlation was calculated by fitting a linear
regression. p-value for the F-test and R2 was calculated for each fit. The shaded area represents
the 95% CI of the fit.
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Figure S5: Optimisation of parameters for MI-IPA. All parameters are as in Bitbol, 2018,
except that we add a scenario where no ‘confidence’ is calculated. This is a greedy assignment
(as in “greedy”), but no confidence score is calculated for the pairing. Rather, the scoring for
each pairing is used raw to rank the pairs. Shaded areas or error bars represent the standard
deviation around the mean (solid line) for 10 repeats of each model. A): θ and λ (controlling
sampling correction and effective set size calculation, respectively); B): step size; C): confidence
calculation algorithms. One-sided t-tests are calculated to compare performance of each model
to its no-learning scenario (achieved by setting λ = 1). pvalues: ***< 0.001; 0.001 ≤**< 0.01;
0.01 ≤*< 0.05.
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Figure S6: Impact of k and distance function choice on GA pairing. The GA was
run with a range of k and 4 different distance metrics to evaluate their impact on the two
benchmarking epitopes. Precision was calculated for each setting. The shaded areas show the
standard deviation around the mean (solid line) for 100 repeats of the model.
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Figure S7: Learning of the GA+MI-IPA over iterations with different settings. Perfor-
mance of combining the GA (Levenshtein distance, k = 20) with MI-IPA (θ = 0.6, no confidence,
step size = 6) is shown for the two benchmarking epitopes. The orange horizontal line shows the
number of correct pairs in the GA consensus assignment which was used to select the training
sets. The GA assignment is used as training for the MI-IPA, either by taking the complete
assignment (threshold = 0, right column), or only the stable pairs (threshold = 0.95, left col-
umn). The MI-IPA is then allowed to pair all remaining β to all remaining α (pink dotted line
with fewer iterations) or pair all α and β, including the ones in the training set (purple line).
Performance of the MI-IPA on its own is also shown, with λ = 0.6 (cyan line) or λ = 1 (no
learning, black dotted line). Shaded areas show the standard deviation around the mean (solid
line).
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A. Correct αβ pairs with ID
α β ID

CASSALASLNEQFF CASSS--LNTQYF A
CASSFG-VEDEQYF CASSS--LNTQYF B
CASSALASLNEQFF CASSIRSTDTQYF B

B. Predicted αβ pairs without ID
α β correct

CASSALASLNEQFF CASSS--LNTQYF True
CASSALASLNEQFF CASSS--LNTQYF True
CASSFG-VEDEQYF CASSIRSTDTQYF False

C. Predicted αβ pairs with ID
α β ID correct

CASSALASLNEQFF CASSS--LNTQYF A True
CASSALASLNEQFF CASSS--LNTQYF B False
CASSFG-VEDEQYF CASSIRSTDTQYF B False

Figure S8: Example assignment with repeat sequences and ID. A) Correct pairs to be
found. The blue α appears twice in the two individuals, but paired with two different β. The
red β also appears twice, once paired with the blue α. B) Pairs assigned by the algorithm,
disregarding individual information. Here, the blue α/red β pair appears twice. In the precision
calculation, this will be counted twice as correct, giving a precision of 0.66. C) Pairs assigned
by the algorithm, including individual information. Here, the blue α/red β pair appears twice.
Because the blue α/red β pair does not appear in individual B, the pair is considered correct
only in individual A.
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Figure S9: Ratio of sequence similarity between sequences paired to real clusters
and random samples from epitope repertoires. For each cluster (of CDR3α, top and of
CDR3β, bottom) in each epitope repertoire, the similarity between the paired CDR3s to the
sequences in each cluster is calculated. 100 random samples of the same size from the same
epitope-specific repertoire are also taken and their similarity calculated. The ratio between the
median sequence similarity of the real pairs and of the random controls is shown (black circles,
average median control similarity taken over all controls, ratio shown as log10, 0s imputed as
10−4 to be able to calculate the ratio and the log10 of the ratio). The red diamonds show the
average across all clusters for that epitope.

46

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2024. ; https://doi.org/10.1101/2024.05.24.595718doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.24.595718
http://creativecommons.org/licenses/by/4.0/


A

B

Figure S10: Correlation of CDR3 pairwise sequence similarity between the two
chains. Pairwise similarity was calculated between all CDR3α and all CDR3β annotated for
each epitope (including duplicate sequences). The pairwise similarity on the α chains was then
binned and the similarity of the paired CDR3β examined (A, vice versa in B). The large circles
joined by a solid line represent the median for each distribution, whilst the violin plots show
the distribution of the underlying distances. Spearman correlation was calculated using the
mid-point of each bin, and correlating with the median of the values for that bin.
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Figure S11: Correlation between mutual information and epitope repertoire size and
mutual information and effective set size. For each epitope and each pair of variables
the mutual information (MI) was estimated, correcting for finite size effects (see Methods). The
correlation between MI and epitope repertoire size (N, A) or αβ effective set size (B) is shown for
each pair of variables. Effective set size was calculated by grouping all sequences with Hamming
distance < 3 on the paired chain, normalised by N. Correlation was calculated by fitting a linear
regression. p-value for the F-test and R2 was calculated for each fit. Fits that have p-value<0.05
are highlighted in red. The shaded area represents the 95% CI of the fit.
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Figure S12: Stability of the pairs assigned by the MI-IPA. A) The bar chart shows the
stability of the assignments made for each epitope. The x-axis shows the number of times an
assignment is made across 10 repeats (i.e. the frequency of the mode, also colour-coded) and the
y-axis shows the proportion of assignments that have that mode. The bar graph is repeated for
each epitope, and for large epitopes all five subsamples are shown. The results shown correspond
to pairing with λ = 0.6. B) The right-most bar for each epitope in A is broken down to show
the proportion of stable assignments that are correct (with λ = 0.6 or λ = 1). The number on
top of each bar indicates the number of correct pairs that were selected 10 times. The number
at the top of each section indicates the percentage of correctly assigned pairs among pairs that
are stably selected across repeats. Of note, some epitopes show stable pairs also in the chance
expectation (λ = 1) scenario. These arise from individuals of size 1, i.e. examples where only a
single α and a single β are available from an individual, which will always be assigned correctly
independently of how well the model is learning.
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Figure S13: Stability of the pairs assigned by the GA. A) The bar chart shows the stability
of the assignments made for each epitope. The x-axis shows the number of times an assignment
is made across 100 repeats (i.e. the frequency of the mode, also colour-coded) and the y-axis
shows the proportion of assignments that have that mode. The bar graph is repeated for each
epitope, and for large epitopes all five subsamples are shown. The results shown correspond to
GA run with k = 20 on Levenshtein distance. B) The right-most bar for each epitope in A is
broken down to show the proportion of stable assignments that are correct. The number on top
of each bar indicates the number of correct pairs that were selected ≥ 95 times. The number at
the top of each section indicates the percentage of correctly assigned pairs among pairs that are
stably selected across repeats.
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Figure S14: Stability of the pairs assigned by the GA+MI-IPA. A) The bar chart shows
the stability of the assignments made for each epitope. The x-axis shows the number of times
an assignment is made across 10 repeats (i.e. the frequency of the mode, also colour-coded)
and the y-axis shows the proportion of assignments that have that mode. The bar graph is
repeated for each epitope, and for large epitopes all five subsamples are shown (λ = 0.6, golden
set from the GA, re-pairing allowed). B) The right-most bar for each epitope in A is broken
down to show the proportion of stable assignments that are correct (MI-IPA run with λ = 0.6
or λ = 1, golden set from the GA, re-pairing allowed). The number on top of each bar indicates
the number of correct pairs that were selected 10 times. The number at the top of each section
indicates the percentage of correctly assigned pairs among pairs that are stably selected. Of
note, some epitopes show stable pairs also in the chance expectation (λ = 1) scenario. These
arise from individuals of size 1, i.e. examples where only a single α and a single β are available
from an individual, which will always be assigned correctly independently of how well the model
is learning.
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